期刊文献+

1-quasiconformal mappings on a (2,2)-type quadric 被引量:1

1-quasiconformal mappings on a (2,2)-type quadric
下载PDF
导出
摘要 This paper gets the Beltrami equations satisfied by a 1-quasiconformal mapping, which are exactly CR or anti-CR equations on (2,2)-type quadric Q0. This means a 1-quasiconformal mapping on Q0 is CR or anti-CR. This reduces the determination of 1- quasiconformal mappings to a problem on the theory of several complex analysis. The result about the group of CR automorphisms is used to determine the unit component of group of 1-quasiconformal mappings. This paper gets the Beltrami equations satisfied by a 1-quasiconformal mapping, which are exactly CR or anti-CR equations on (2,2)-type quadric Q0. This means a 1-quasiconformal mapping on Q0 is CR or anti-CR. This reduces the determination of 1- quasiconformal mappings to a problem on the theory of several complex analysis. The result about the group of CR automorphisms is used to determine the unit component of group of 1-quasiconformal mappings.
作者 WU Qing-yan
机构地区 Dept. of Math.
出处 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2009年第1期65-75,共11页 高校应用数学学报(英文版)(B辑)
基金 Supported by the National Natural Science Foundation of China (10571155)
关键词 Beltrami equation quasiconformal mapping QUADRIC CR automorphism Beltrami equation quasiconformal mapping quadric CR automorphism
  • 相关文献

参考文献1

二级参考文献19

  • 1[1]Izeki H.The Teichmüller distance on the space of flat conformal structures.Conform Geom Dyn,1998,2:1-24
  • 2[2]Pansu P.Métriques de Carnot-Caratheodory et quasiisométries de espaces symétriques de rang un.Ann Math,1989,129:1-60
  • 3[3]Wang W.Representations of SU(p,q) and CR geometry I.Journal of Mathematics of Kyoto University,2005,45(4):759-780
  • 4[4]Chern S S,Moser J.Real hypersurfaces in complex manifolds.Acta Math,1974,133:219-271
  • 5[5]Burns D,Shnider S.Spherical hypersurfaces in complex manifolds.Invent Math,1976,33:223-246
  • 6[6]Kamishima Y,Tsuboi T.CR-structures on Seifert manifolds.Invent Math,1991,104:149-163
  • 7[7]Wang W.Canonical contact forms on spherical CR manifolds.Journal of Euripean Mathematical Society,2003,5:245-273
  • 8[8]Choi S.Geometric structures on orbifolds and holonomy representations.Geom Dedicata,2004,104:161-199
  • 9[9]Thurston W.The geometry and topology of 3-Manifolds.Lecture Notes,Princeton:Princeton Univ Press,1980
  • 10[10]Canary R,Epstein D,Green P.Notes on notes of Thurston.In:Analytical and Geometric Aspects of Hyperbolic Space.London Math Soc Lecture Note Ser 111,Cambridge:Cambridge Univ Press,1987,3-92

共引文献2

同被引文献23

  • 1WANG Wei.The Teichmüller distance on the space of spherical CR structures[J].Science China Mathematics,2006,49(11):1523-1538. 被引量:3
  • 2V. K. Beloshapka,V. V. Ezhov,G. Schmalz.Vitushkin’s germ theorem for engel-type CR manifolds[J]. Proceedings of the Steklov Institute of Mathematics . 2006 (1)
  • 3Michael Cowling,Filippo De Mari,Adam Korányi,Hans Martin Reimann.Contact and Conformal Maps in[J]. Geometriae Dedicata . 2005 (1)
  • 4Wei Wang.Canonical contact forms on spherical CR manifolds[J]. Journal of the European Mathematical Society . 2003 (3)
  • 5Zoltán M. Balogh,Ilkka Holopainen,Jeremy T. Tyson.Singular solutions, homogeneous norms, and quasiconformal mappings in Carnot groups[J]. Mathematische Annalen . 2002 (1)
  • 6G. A. Margulis,G. D. Mostow.The differential of a quasi-conformal mapping of a Carnot-Caratheodory space[J]. Geometric and Functional Analysis . 1995 (2)
  • 7Alexander Nagel,Elias M. Stein,Stephen Wainger.Balls and metrics defined by vector fields I: Basic properties[J]. Acta Mathematica . 1985 (1)
  • 8A. Korányi,H. M. Reimann.Quasiconformal mappings on the Heisenberg group[J]. Inventiones Mathematicae . 1985 (2)
  • 9Wei-Liang Chow.über Systeme von liearren partiellen Differentialgleichungen erster Ordnung[J]. Mathematische Annalen . 1940 (1)
  • 10Meylan F,Mir N,Zaitsev D.Holomorphic extension of smooth CR-mappings between real-analytic and real-algebraic CR-manifolds. Asian Journal of Mathematics . 2003

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部