摘要
证明了满足下列条件的半质环是交换环:1)若对x,y,z∈R,存在整数m=m(x,z)>1,n=n(x,z)>1,使得[(xmy)n-xym,z]∈Z(R)则R为交换环.2)若对x,y,z∈R,存在整数m=m(y,z)>1,n=n(y,z)>1,使得[(xmy)n+xmy,z]∈Z(R)则R为交换环.
In this paper,two commutativity theorem on semiprimerings as follows: 1 ) For any x,y,z∈ R are proved,there exist integers m = m(x,z)〉1,n=n(x,z)〉1m such that [ (x^m y)^n -xy^m ,z] ∈ Z(R) then R is commutative.
2) For any x,y,z ∈ R, there exist integers m = m (y,z) 〉 1, n = n (y,z) 〉 1, such that [ (x^m y)^n +x^m y,z] ∈Z(R) then R is commutative.
出处
《哈尔滨商业大学学报(自然科学版)》
CAS
2009年第1期114-116,共3页
Journal of Harbin University of Commerce:Natural Sciences Edition
基金
黑龙江省自然科学基金(A200601)
关键词
质环
半质环
交换性
kothe半单环
prime rings
semi prime rings
commutativity
kothe semisimple rings