期刊文献+

热声热机技术的研究进展 被引量:24

Advance in Thermoa coustic Technology
下载PDF
导出
摘要 首先简要地介绍热声热机(包括热声发动机和热声制冷机)的基本工作原理和热声技术特点,指出热声热机是基于热致声效应和声制冷效应两类热声效应而工作的,它完全没有机械运动,采用惰性气体工作,是一种可靠性高和环保的新型的能源转换机械。然后重点介绍近十几年来国内外在热声技术研究方面所取得的重要进展,主要包括在热声发动机和热声制冷机两个方面。在热声发动机研究方面,简要回顾热声效应的发现和驻波热声发动机的研究进展,接着介绍行波热声发动机的提出和迅速发展历程,重点介绍热声转换效率达到30%的热声斯特林发动机和压比达到1.3(采用氦气)、效率达到32%的聚能型热声发动机研究工作;在热声制冷技术方面,分别介绍热声驱动脉冲管制冷获取低温的研究工作以及热声驱动室温制冷机获得高效率、大冷量等方面的研究工作,并重点介绍采用声压放大器获得液氢温度以下的完全无运动部件热声驱动脉冲管制冷机(低于20K),以及在?20℃获得了300W以上的制冷量的双行波流程的热声驱动室温热声制冷机。最后,扼要地介绍热声理论方面的研究进展,并对热声技术的问题和该研究领域的发展方向进行展望。 This paper first briefly introduces the basic working principle and technical features of thermoacoustic technology, points out that the thermoacoustic technology (including thermoacoustic heat engines and refrigerators) based on thermoacoustic effects has the obvious advantages of high reliability and environmental friendliness due to free of moving mechanical parts and using of inert working gas. Then, the important milestones in the research of the thermoacoustic technology in the recent decades are summarized, mainly including the researches of thermoacoustic heat prime movers and thermoacoustic refrigerators. In regard to thermoacoustic heat prime movers, the paper first gives a brief review of the discovery history of the two kinds of thermoacoustic effects: thermally-induced sound and acoustical-induced refrigeration effects, as well as the research progress in the standing-wave thermoacoustic heat engines. Successively, the suggestion of traveling-wave thermoacoustic heat engine concept and its rapid developments are presented in more detail. Among the important advancements, the researches on the thermoacoustic-Stirling heat engine (TASHE) with a 30% thermoacoustic conversion efficiency and on the energy-focused TASHE with a maximum pressure ratio over 1.3 (with helium as working gas) and a 32% thermal efficiency are highlighted. In the aspect of thermoacoustic refrigerators, several researches on thermoacoustically driven pulse tube cryocooler for achieving cryogenic cooling below 120 K and thermoacoustic room-temperature refrigerators for achieving higher efficiency and large cooling power are reported. In particular, the thermoacoustically-driven two-stage pulse tube cryocooler capable of reaching a lowest temperature below 20 K by using a so-called acoustical pressure amplifier and the heat-driven double thermoacoustic-Stirling refrigerator achieving 300 W at -20℃ with higher efficiency are emphatically introduced. Finally, this paper also gives a brief review of the advancement of thermoacoustic theory, discusses the key scientific and technical issues of the current thermoacoustic technology, and forecasts the future development trends of thermoacoustic technology.
作者 周远 罗二仓
出处 《机械工程学报》 EI CAS CSCD 北大核心 2009年第3期14-26,共13页 Journal of Mechanical Engineering
基金 国家自然科学基金(50536040 50625650 50506031) 中科院知识创新工程(KJCX2-SW-W12 KJCX3-SYW-W02)资助项目
关键词 研究进展 热声技术 高效/环保 热声发动机/制冷机 驻波/行波 热声斯特林发动机 聚能谐振管 声压放大器 热声理论 线性/非线性效应 Research advance Thermoacoustic technology High efficiency and environmental friendlinessThermoaeoustic heat engines/refrigerators Standing/traveling wave Yhermoacoustic-Stirling Energy-focused resonatorAcoustical pressure amplifier Thermoacoustic theory Linear/nonlinear effects
  • 相关文献

参考文献96

  • 1PUTNAM A A, DENNIS W R. Survey of organ-pipe oscillations in combustion systems[J]. J. Acoust Soc. Am., 1956, 28(2): 246-259.
  • 2FELDMAN K T. Review of the literature on Sondhauss thermoacoustic phenomena[J]. J. Sound Vib., 1968, 7(1). 71-82.
  • 3FELDMAN K T. Review of the literature on Rijke tbermoacoustic phenomena[J]. J. Sound Vib., 1968, 7(1): 83-89.
  • 4TACONIS K W. Vapor-liquid equilibrium of solutions of He3-He4[J]. Physica, 1949, 15: 738.
  • 5MERKLI P, THOMANN H. Thermoacoustic effects in a resonance tube[J]. J. Fluid Mech., 1975, 70, part 1: 161-177.
  • 6GIFFORD W E, LONGSWORTH R C. Pulse tube refrigerator[J]. J. Eng. Ind., Trans. ASME, 1964, 86: 264-270.
  • 7SWIFT G W. Thermoacoustic engine[J]. J. Acoust Soc. Am., 1988, 84: 1 145-1 180.
  • 8FELDMAN K T. A study of heat generated pressure oscillations in a closed end pipe[D]. Missouri: University of Missouri, 1966.
  • 9FELDMAN K T. A study of heat driven pressure oscillations in gas[J]. J. Heat Transfer, 1970, 92: 536.
  • 10WHEATLEY J, COX A. Natural engines[J]. Physics Today, 1985, 85: 50-58.

二级参考文献75

共引文献115

同被引文献257

引证文献24

二级引证文献175

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部