期刊文献+

氧化硅包覆铁“壳/核”型纳米复合粒子的制备及其吸波特性研究 被引量:3

Synthesis and Microwave Absorption of the Silica-coated Fe Nanocomposites
下载PDF
导出
摘要 采用非平衡物理气相蒸发法在氢气-氩气混合气氛下制备了氧化硅包覆铁“壳/核”型纳米复合粒子.通过X射线衍射(XRD)、透射电子显微镜(TEM)和能谱分析(EDS)等方法表征了纳米复合粒子的相组分、结构以及颗粒形貌.结果表明,制备的氧化硅包覆铁纳米复合粒子的尺寸在50nm左右,在铁纳米粒子的表面还出现了非晶态的氧化硅纳米棒,长度为150-200nm.利用电磁参数模拟微波吸收特性得出,涂层厚度为1.79mm时,在15.4GHz频率处达到最小反射损耗值为-14.5dB,反射损耗在8-18GHz的频段低于-10dB,且损耗机制为自然共振. Silica-coated Fe nanocomposites were prepared by the DC arc plasma in a mixed atmosphere of hydrogen (H2) and argon (Ar). The phase structure, composition and morphology of silica-coated Fe nano- composites were examined by X-ray diffraction ( XRD), transmission electron microscope ( TEM ) and electron energy dispersive spectroscope(EDS). The results show that the mean size of silica-coated Fe nanocomposites is about 50nm, and the amorphous silica which cover BCC-Fe cores form nanorods with the length of 150-200nm. The growth mechanism of silica-coated Fe nanocomposites is governed by an extended vaporliquid-solid mechanism and Fe nanoparticles acted as a catalyst for the growth of the nanorods. Its electromagnetic parameters are measured in the range from 2GHz to 18GHz. It is calculated that the maximum reflection loss of silica-coated Fe nanocomposites can reach -14.5dB at 15.4GHz with l. 79mm in thickness, and the bandwidth with a reflection loss less than - 10dB is from 8 - 18GHz. The in-depth study of relative complex permittivity and permeability reveals that the excellent microwave absorption properties are the consequence of a proper EM match in microstructure. And the loss mechanism is natural resonance, as the consequence of the increased surface anisotropic energy for nanosized particles.
出处 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2009年第2期340-344,共5页 Journal of Inorganic Materials
基金 国家自然科学基金(50371012,50801008) 辽宁省自然科学基金(20032125) 教育部留学回国人员科研启动基金(教外司留[2007]1108号)
关键词 非平衡物理气相蒸发法 壳/核型纳米复合粒子 微波吸收 non-equilibrium physical vapor condensation core/shell-type nanocomposite particles microwave absorption
  • 相关文献

参考文献33

  • 1Bregar V B. IEEE Transactions on Magnetics, 2004, 40 (3) : 1679- 1684.
  • 2Xu P, Han X, Jiang J, et al. Journal of Physical Chemistry C, 2007, 111(34) : 12603-12608.
  • 3Pinho M S, Gregori M L, Rnunes R C. European Polymer Journal, 2002, 38( 11 ) : 2321-2327.
  • 4Itoh M, Liu J R, Horikawa T, et al. Journal of Alloys and Compounds, 2006, 408-412 (1-2) : 1400-1403.
  • 5Li X, Yang H B, Fu W Y, et al. Materials Science and Engineering B, 2006, 135(1) : 38-43.
  • 6Stonier R A. Sampe Journal, 1992, 27(5) : 1-6.
  • 7Chen Y J, Cao M S, Tian Q, et al. Materials Letters, 2004, 58 (9) :1481-1484.
  • 8Zhou Y H, He Q S, Zheng X J. The European Physical Journal E, 2004, 17(445) : 181-187.
  • 9Dishovski N. IEEE Transactions on Magnetics, 1994, 30(2): 969-971.
  • 10Miyata Y. IEEE Transactions on Magnetics, 1997, 33(5): 3427- 3429.

二级参考文献25

  • 1张锐,王海龙,高濂,关绍康,郭景坤.Cu包裹SiC复合粉体热物理化学性能研究[J].无机材料学报,2005,20(2):494-498. 被引量:11
  • 2Gueorguiev G K, Pacheco J M, Tomanek D. Phys. Rev. Lett., 2004, 92: 215501-215505.
  • 3Chen Y J, Cao M S, Wang T H, et al. Appl. Phys. Lett., 2004,84:3367-3369.
  • 4Zhao D L, Zhao H S, Zhou W C. Physica E, 2001, 9:679-685.
  • 5Imholt T J, Dyke C A, Hasslacher B, et al. Chem. Mater., 2003, 15:3969-3794.
  • 6Zhang B,Li J B, Sun J J,et al. J. Eur. Ceram. Soc., 2002,22:93-99.
  • 7Microwave processing of ceramics an overview. 3rd edition, edited by W. H. Sutton, R. L. Beatty, M. F.Iskander and W. H. Sutton. Materials Research Society, San Francisco, 1992.
  • 8Morkoc H, Strite S, Guo G B. J. Appl. Phys., 1994, 76:1363-1398.
  • 9Krstic V D. Am J. Ceram. Soc., 1992, 75:170-175.
  • 10Bardal A. J. Mater. Sci., 1993, 28 (10):2699-2703.

共引文献10

同被引文献65

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部