期刊文献+

Tb_(1-x)Dy_xFe_(2-y)-BaTi_(0.99)Cr_(0.01)O_(3-δ)多层复合结构中的磁电效应 被引量:2

Magnetoelectric Effect in Laminate Composites Tb_(1-x)Dy_xFe_(2-y)-BaTi_(0.99)Cr_(0.01)O_(3-δ)
下载PDF
导出
摘要 采用溶胶-凝胶法制备了Cr掺杂BaTiO3陶瓷片.X射线衍射显示Cr掺杂BaTiO3依然为四方相钙钛矿结构.差热分析显示,Cr掺杂BaTiO3的居里温度及相变潜热均比纯净BaTiO3的同类参量略低.将所得BaTi0.99Cr0.01O3-δ陶瓷片与Tb1-xDyxFe2-y粘结成磁电双层及三层复合结构材料.研究了双层Tb1-xDyxFe2-y-BaTi0.99Cr0.01O3-δ和三层Tb1-xDyxFe2-y-BaTi0.99Cr0.01O3-δ-Tb1-xDyxFe2-y复合材料的磁电效应.在28 kA/m的磁场下,两者的横向ME电压系数均达其峰值,为732.5和2753mV/A.该两数值分别是采用BaTiO3制备的同类双层及三层复合结构的同类数值的1.54及1.56倍.由于掺杂钛酸钡不含铅、锆等有害物质,因此采用掺杂BaTiO3替代锆钛酸铅做为"绿色"压电材料制备磁电效应器件具有研究和应用价值. Chromiun doped BaTiO3 was synthesized with sol-gel technique. The Cr-doped BaTiO3 was still in the structure of tetragonal perovskite by X-ray diffraction, and its transformation point of ferroelectric to paraelectric as well as the latent heat of the transformation were observed a little less than those of pure BaTiO3 , respectively, by the tests of differential scanning calorimetry. Layered composites Tb1-x DyxFe2-y and BaTi1-xCr2O3-δ were fabricated by bonding the discs of the doped BaTiO3 and rare earth alloy Tb1-xDyxFe2-y, The magnetoelectric (ME) effect of the layered samples was investigated. The transverse ME voltage coefficient for the bilayer Tb1-x DyxFe2-y-BaTi1-z Cr2O3-δ and the trilayer Tb1-x DyxFe2-y·BaTi1-z Cr2O3-δ·Tb1-x DyxFe2-y reach 732.5 and 2753mV/A, respectively, under a bias magnetic field 28kA/m at room temperature, which are about 54% and 56% larger than those for the bilayer and trilayer composed by pure BaTiO3, respectively. Since Cr-doped BaTiO3 does not contain injurants, such as lead and zirconium, it can replace lead zirconium titanite as a "green" piezoelectric material for ME composites.
作者 高剑森 张宁
出处 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2009年第2期367-370,共4页 Journal of Inorganic Materials
基金 国家自然科学基金(10674071)
关键词 掺杂钛酸钡 绿色压电体 磁致伸缩材料 磁电效应 doped BaTiO3 green piezoelectrics magnetostrictive material magnetoelectric effect
  • 相关文献

参考文献23

  • 1Ilene J. Busch-Vishniac, Phys. Today,1998, 51(7) : 28-34.
  • 2Fujimura N, Ishida T, Yoshimura T, et al. Appl. Phys. Lett. , 1996,69(7) : 1011-1013.
  • 3Dzyaloshinskii I E. J. Exptl. Theoret. Phys. ( U. S. S. R), 1960, 37 : 881-892.
  • 4Folen V J, Rado G T, Stalder E W. Phys. Rev. Lett. , 1961, 6 ( 11 ) : 607-608.
  • 5Nan C W. Phys. Rev. B, 1994,50(9) : 6082-6088.
  • 6Kothale M B, Patankar K K, Kadam S L, et al. Materials Chemistry and Physics, 2003, 77(3) : 691-696.
  • 7Srinivasan G, DeVreugd C P, Flattery C S, et al. Appl. Phys. Lett. , 2004,85 (13) : 2550-2552.
  • 8Wan J G, Wang X W, Wu Y J, et al. Appl. Phys. Lett. , 2005,86 (12) : 122501-1-3.
  • 9Srinivasan G, Rasmussen E T, Hayes R. Phys. Rev. B, 2003,67 (1) : 014418-1-10.
  • 10Dong S, Li J F, Viehland D, et al. Appl. Phys. Lett. , 2004,85 (16) : 3534-3536.

同被引文献4

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部