期刊文献+

表面活性剂对磺化酞菁钴苛性碱液的稳定化作用研究 被引量:1

Study on the Effects of Activator on the Stability of CoPcS-Alkaline Solution
下载PDF
导出
摘要 针对磺化酞菁钴在氢氧化钠碱液中易聚沉的问题,考察了四乙基氢氧化铵(TEAH)和复合表面活性剂XZHA的添加对磺化酞菁钴氢氧化钠溶液(剂碱液)稳定性能的影响,结果表明,TEAH的添加对剂碱液的稳定性作用不大,XZHA的添加可以大大提高剂碱液的稳定性。无氢氧化钠存在时,在磺化酞菁钴的水溶液中添加TEAH或TEAH和XZHA的复配液都会使磺化酞菁钴的稳定性得到较大的提高,在静置17 d后,紫外-可见光谱仍能保持原来新鲜剂碱液的吸光度值。考察了4种剂碱液脱除辛硫醇的效率,结果表明,添加w(XZHA)=0.25%的磺化酞菁钴氢氧化钠溶液的脱硫醇效率远远高于磺化酞菁钴氢氧化钠溶液的脱硫醇效率,反应时间6m in时的脱硫醇率分别为97.14%和75.13%。 In view of coagulation of sulfonated cobalt phthalocyanine in alkaline solution, the effect of adding composite activator XZHA or tetraethyl ammonium hydroxide (TEAH) into the solution of catalyst-alkaline was examined. It was found that, the addition of TEAH had little effect on the stability of catalyst-alkaline solution. The stability of catalyst-alkaline solution can be improved greatly by adding XZHA. Results show that in the absence of alkali, the stability of sulfonated cobalt phthalocyanine can be improved greatly by adding TEAH or the composite liquid of TEAH and XZHA. After standing for 17 days, the absorbance of UV - Vis spectra of catalyst solution has little change as compared with the fresh catalyst-alkaline solution. Efficiency of removing octanethiol by four kinds of. catalyst-alkaline solution was detected. Results revealed that by adding XZHA [ w (XZHA) = 0. 25% ], the efficiency of removing octanethiol of the catalyst-alkaline solution was much higher than that of the catalyst-alkaline solution without XZHA. When the time was 6 min, the removal efficiency were 97.14% and 75.13% respectively.
出处 《精细化工》 EI CAS CSCD 北大核心 2009年第3期243-247,共5页 Fine Chemicals
关键词 磺化酞菁钴 稳定性 辛硫醇 表面活性剂 sulfonated cobalt phthalocyanine stability octanethiol surfactants
  • 相关文献

参考文献15

二级参考文献68

共引文献53

同被引文献11

  • 1王玉海,田永亮,刘瑞婷,项玉芝,夏道宏.液化气Merox脱硫醇精制中脱硫深度和催化剂稳定性研究[J].天然气化工—C1化学与化工,2005,30(2):14-18. 被引量:9
  • 2袁诗海,吴星,姚荣,郑刚.四磺化酞菁钴轴向配位反应研究[J].感光科学与光化学,1996,14(4):341-346. 被引量:7
  • 3于航,李旭辉,夏道宏,项玉芝,徐艳丽,相养东.复合活性剂在不同条件下对磺化酞菁钴脱硫醇催化剂碱液稳定作用的研究[J].天然气化工—C1化学与化工,2007,32(3):73-77. 被引量:3
  • 4Lebedeva N S, Pavlycheva N A, Kulinich V P, et al. Thermal Oxidative Destruction of Cobalt ( lI ) Phthalocyanines with Oxygen Containing Substituents [ J ]. J Therm Anal Calorim ,2005,81 (2) :451-455.
  • 5Cheng Z H, Cui N, Zhang H X, et al. Synthesis and Dimerization Behavior of Five Metallophthalocyanines in Different Solvents[ J]. Adv Mat Sci Eng,2014 : 1-5.
  • 6Yamk H, Aydln D, Durmu~ M, et al. Peripheral and Non-peripheral Tetrasubstituted Aluminium, Gallium and Indium Phthalocyanines : Synthesis, Photophysics and Photochemistry [ J ]. Photochem Photobiol A Chem, 2009,206 ( 1 ) : 18-26.
  • 7Bouanani F, Bendedouch D, Hemery P, et al. Characterization of a Miniemulsion by DLS and SANS [ J ]. Colloids Su~C A Physicochem Eng Aspects, 2012,404 : 47-51.
  • 8Tyapochkin E M, Kozliak E I. Kinetic and Binding Studies of the Thiolate-cobah Tetrasulfophthalocyanine Anaerobic Reaction as a Subset of the Merox Process[J]. J Mol Catal A Chem,2005,242(1/2) :1-17.
  • 9Ganguly S K,Das G,Kumar S,et al. Mechanistic Kinetics of Catalytic Oxidation of 1-Butanethiol in Light Oil Sweetening [J]. Catal Today,2012,198( 1 ) :246-251.
  • 10王辉国,范志明,柯明,刘溆蕃.新型硫醇氧化双功能催化剂CoSPc/Mg(Al)O的研究[J].石油炼制与化工,2001,32(1):49-53. 被引量:16

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部