期刊文献+

一类浅水波模型的可积性、守恒量和新型孤立波

Integrability,conservation laws and new solitary waves of one type of shallow water wave models
下载PDF
导出
摘要 分析一类浅水波模型即广义CH方程中对流项强度及系数对可积性和显式解结构的影响.通过Painleve分析,证明m=2时方程是可积的,并且给出其守恒量和Ham ilton结构.推广一种统一的代数求解方法,把平衡关系式的变量数增加到3个,从而获得广义CH方程更为丰富的显式解,特别是一些新型孤波解:当m=1时,方程具有移动紧孤立波解(对流项系数为负号)以及移动尖峰孤立波解(对流项系数为正号);当m=2时,可积方程具有光滑孤立波解和周期波解;当m=3时方程具有周期波解. Influence of intensity and coefficients of convections on the integrability and structure of exact solutions for one type of shallow water wave models,namely the generalized CH equation is analyzed.Through the Painleve analysis,it is proved that the equation is integrable as m=2,and conservation laws and Hamilton structure are also given.One unified algebra solution method is extended by changing the balance relationship variable number to three,and hence richer explicit solutions are obtained.Some new solitary wave solutions are: for m=1,the equation permits shifting compact solitary wave solutions when the convection coefficient is negative,and shifting peak solitary wave solutions when the convection coefficient is positive;for m=2,the equation permits the smooth solitary wave solution and the periodic wave solutions;for m=3,the equation has the periodic wave solutions.
出处 《江苏大学学报(自然科学版)》 EI CAS 北大核心 2009年第2期213-216,共4页 Journal of Jiangsu University:Natural Science Edition
基金 国家自然科学基金资助项目(10771088) 江苏大学高级人才专项基金资助项目(07JDG082) 江苏省博士后基金资助项目(0801028C)
关键词 浅水波模型 可积性 守恒量 紧孤立波 尖峰孤立波 shallow water wave models integrability conservation laws compacton peakon
  • 相关文献

参考文献8

  • 1Camaasa R, Holm D. An integrable shallow equation with peaked solitons[J].Phys Rev Lett, 1993,13 : 1661 - 1665.
  • 2田立新,李梅霞,殷久利.一个杆方程孤立波的轨道稳定性[J].江苏大学学报(自然科学版),2006,27(4):372-374. 被引量:1
  • 3田立新,殷久利.非线性Schrdinger方程的Compacton解和孤立波解[J].江苏大学学报(自然科学版),2004,25(1):44-47. 被引量:15
  • 4Tian Lixin,Yin Jiuli. Multi-compacton and double svmmetric peakon for generalized Ostrovsky equation[J]. Chaos, Solitans and Fractals, 2008,35 ( 5 ) :991 - 995.
  • 5殷久利,田立新.一类非线性方程的Backlund变换以及紧孤立波解的线性稳定性[J].数学物理学报(A辑),2007,27(1):27-36. 被引量:4
  • 6Yin Jiuli. Painleve integrability, Backlund transformation and stability of modified DGH equation [J]. International Journal of Nonlinear Science, 2006,3 (2) :183 - 187.
  • 7Yah Zhenya. Painleve analysis auto-Backlund transformations and exact solutions for a simplified model forreacting mixtures[J].Physica A, 2003,326 : 344 - 359.
  • 8Fan E G. Uniformly constructing a series of explicit exact solutions to nonlinear equations in Maplel physics[J]. Chaos,Solitons & Fractals,2003,30(16): 819- 839.

二级参考文献24

  • 1于水猛,田立新.一类充分非线性方程Compacton解和孤立波解[J].江苏大学学报(自然科学版),2005,26(2):129-132. 被引量:4
  • 2殷久利,田立新,桂贵龙.广义Camassa-Holm方程的对称性约化和精确解[J].江苏大学学报(自然科学版),2005,26(4):312-315. 被引量:6
  • 3Zhou Yong.Stability of solitary waves for a rod equation[J].Chaos,Solitons and Fractals,2004,21 (4):977 -981.
  • 4Dai Hui-hui.Solitary shock waves and other traveling waves in a general compressible hyperelastic rod[J].Phys Eng Sci,2000,45:331 -363.
  • 5Constantin A,Strauss W.Stability of peakons[J].Commun Pure Appl Math,2000,45:603-610.
  • 6Constantin A,Escher J.Well-posedness,global existence and blow-up phenomena for a periodic quasi-linear hyperbolic equation[J].Commun Pure Appl Math,1998,51:475 -504.
  • 7Li Y,Olver P.Well-posedness and blow-up solution for an integrable nonlinear dispersive modle wave equation[J].Different Equat,2000,162:27-63.
  • 8Xin Z,Zhang P.On the weak solution to a shallow water equation[J].Commun Pure Appl Math,2000,53:1411-1433.
  • 9Xin Z,Zhang P.On the uniqueness and large time behavior of the weak solutions to a shallow water equation[J].Commun Part Different Equat,2002,27:1815 -1844.
  • 10Dey B, Khare A. Stability of compacton solutions. Phys Rev E, 1998, 58(2): 2741-2744

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部