期刊文献+

A Model Study of Equation of State of QCD at Finite Chemical Potential and Zero Temperature

A Model Study of Equation of State of QCD at Finite Chemical Potential and Zero Temperature
下载PDF
导出
摘要 In this paper, we give a direct method for calculating the partition function, and hence the equation of state (EOS) of QCD at finite chemical potential and zero temperature. In the EOS derived in this paper the pressure density is the sum of two terms: the first term P(μ)|μ=0 (the pressure density at μ = 0) is a μ-independent constant; the second term, which is totally determined by G[μ] (p) (the dressed quark propagator at finite μ), contains all the nontrivial μ-dependence. By applying a general result in the rainbow-ladder approximation of the Dyson-Schwinger approach obtained in our previous study [Phys. Rev. C 71 (2005) 015205], G[μ](p) is calculated from the meromorphic quark propagator proposed in [Phys. Rev. D 67 (2003) 054019]. From this the full analytic expression of the EOS of QCD at finite μ and zero T is obtained (apart from the constant term P(μ)|μ=0, which can in principle be caJculated from the CJT effective action). A comparison between our EOS and the cold, perturbative EOS of QCD of Fraga, Pisarski and Schaffner-Bielich is made. It is expected that our EOS can provide a possible new approach for the study of neutron stars.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2009年第3期499-505,共7页 理论物理通讯(英文版)
基金 supported in part by the National Natural Science Foundation of China under Grant No.10575050 the Research Fund for the Doctoral Program of Higher Education under Grant No.20060284020
关键词 equation of state (EOS) phase transition QCD 量子色动力学 有限化学势 状态方程 温度 零点 模型 夸克传播 EOS
  • 相关文献

参考文献36

  • 1J.I. Kapusta, Finite-Temperature Field Theory, Cambridge University Press, Cambridge (1989).
  • 2M.le Bellac, Thermal Field Theory, Cambridge University Press, Cambridge (1996).
  • 3Z. Fodor and S. Katz, Phys. Lett. B 534 (2002) 87.
  • 4M.P. Lombardo and M.d' Elia, Phys. Rev. D 67 (2003) 014505.
  • 5C.R. Alton, et al., Phys. Rev. D 68 (2003) 014507.
  • 6R.V. Gavai and S. Gupta, Phys. Rev. D 68 (2003) 034506.
  • 7R.V. Gavai and S. Gupta, ibid. D 72 (2005) 054006.
  • 8S. Gupta and R. Ray, Phys. Rev. D 70 (2004) 114015.
  • 9M. He, W.M. Sun, H.T. Feng, and H.S. Zong, J. Phys. G: Nucl. Part. Phys. 34 (2007) 2655.
  • 10C.R. Allton, et al., Phys. Rev. D 71 (2005) 054508.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部