期刊文献+

Two-Dimensional Breather Lattice Solutions and Compact-Like Discrete Breathers and Their Stability in Discrete Two-Dimensional Monatomic β-FPU Lattice

Two-Dimensional Breather Lattice Solutions and Compact-Like Discrete Breathers and Their Stability in Discrete Two-Dimensional Monatomic β-FPU Lattice
下载PDF
导出
摘要 We restrict our attention to the discrete two-dimensional monatomic β-FPU lattice. We look for two- dimensional breather lattice solutions and two-dimensional compact-like discrete breathers by using trying method and analyze their stability by using Aubry's linearly stable theory. We obtain the conditions of existence and stability of two-dimensional breather lattice solutions and two-dimensional compact-like discrete breathers in the discrete two- dimensional monatomic β-FPU lattice.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2009年第1期153-156,共4页 理论物理通讯(英文版)
基金 supported by National Natural Science Foundation of China under Grant No. 1057400 the Natural Science Foundation of Heilongjiang Province under Grant No. A200506
关键词 β-FPU lattice two-dimensional breather lattice solution two-dimensional compact-like discrete breather 浮点运算 稳定性 紧凑型 单元格 二维 离散 呼吸 稳定理论
  • 相关文献

参考文献38

  • 1A.J. Sievers and S. Takeno, Phys. Rev. Lett. 61 (1988) 970.
  • 2J.B. Page, Phys. Rev. B 41 (1991) 7835.
  • 3R.S. Mackay and S. Aubry, Nonlinearity 7 (1994) 1623.
  • 4E. Fermi, J. Pasta, and S. Ulam, Studios of Nonlinear Problem, Los Alamos Scientific Report (1940), Lectures Appl. Math. 15 (1974) 143.
  • 5S. Takeno, K. Kisoda, and A.J. Sievers, Prog. Theor. Phys. Suppl. 94 (1988) 242.
  • 6S.R. Bickham, S.A. Kiselev, and A.J. Sievers, Phys. Rev. B 47 (1993) 14206.
  • 7T. Cretegry, R. Livi, and M. Spicci, Physica D 119 (1998) 88.
  • 8G. James and P. Noble, Physica D 196 (2004) 124.
  • 9M. Hornguist, E. Lennholm, and C. Basu, Physica D 136 (2000) 88.
  • 10P. Maniadis, A.V. Zolotaryuk, and G.P. Tsironis, Phys. Rev. E. 67 (2003) 046612.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部