期刊文献+

M-P逆在加法扰动下半正定极因子的扰动界

Perturbation Bounds for Semi-positive Definite Polar Factor of M-P Inverse under Additive Noise
下载PDF
导出
摘要 设A∈Cmr×n,~A∈Cmr×n,则A+∈Crn×m,~A+∈Cnr×m.A+和~A+的广义极分解分别是A+=QH与~A+=~Q^H,其中H与~H为n×m次酉矩阵,利用奇异值分解的方法,给出了Moore-Penrose广义逆矩阵A+在酉不变范数‖.‖下半正定极因子的扰动界. Let A∈Cτ^m×n and ^~A∈Cτ^m×n,then A^+∈Cτ^n×m and ^~A∈Cτ^n×m. The generalized polar decompositions of A^+ and A^+=QH and ^~A^+=^~Q^~H respectively.The H and ^~H are n×m sub - unitary matrix. With the singular value decomposition, the perturbation bounds for semi - positive defmite polar factor of Moore - Penrose generalized inverse matrix A^+ under unitarily invariant norm ‖·‖ are obtained.
作者 文伟
出处 《长春师范学院学报(自然科学版)》 2009年第1期5-7,共3页 Journal of Changchun Teachers College
关键词 Moore—Penrose广义逆矩阵 广义极分解 半正定极因子 奇异值分解 扰动界 Moore- Penrose generalized inverse matrix generalized polar decomposition semi - positive definite polar factor singular value decomposition perturbation bounds
  • 相关文献

参考文献5

  • 1C.Davis and W.N.Kahan.The rotation of Eigenvectors by a Perturbation[J].Numer.Anal,1970(7):1-46.
  • 2Li R-C.Relative Perturbation Theory:Ⅰ.Eigenvalue and Singular Value Variations[J].Natrix Anal Appl,1998(19):956-982.
  • 3陈小山,黎稳.酉不变范数下极分解的扰动界[J].计算数学,2005,27(2):121-128. 被引量:8
  • 4Chen X-S,Li W,Sun W.Some New Perturbation Bound for the Generalizod Polar Decomposition[J].BIT,2004(44).237-244.
  • 5Li W,Sun W-W.Perturbation Bounds for Unitary and Subunitary Polar Factors[J].Matrix Anal.Appl,2002(23):1183-1193.

二级参考文献11

  • 1R.Mathias, Perturbation bounds for the generalized polar decomposition, SIAM J. Matrix Anal. Appl., 14(1993), 588-597.
  • 2R.C.Li, New perturbation bounds for the unitary polar factor, SIAM J. Matrix Anal.Appl., 16(1995), 327-332.
  • 3R.C.Li, Relative perturbation bounds for the unitary polar factor, BIT, 37(1997), 67-75.
  • 4X.S.Chen, W.Li and W.Sun, Some new perturbation bounds for the genralized polar decomposition, BIT, 44(2004): 237-244.
  • 5W. Li and W. Sun, Perturbation bounds for unitary and subunitary polar factors, SIAM J. Matrix Anal. Appl., 23(2002), 1183-1193.
  • 6G.W.Stewart, Perturbation bounds for the QR factorization of a matrix, SIAM J. Numer Anal., 14(1977), 509-518.
  • 7R. Bhatia, C. Davis and F. Kittaneh, Some inequalities for commutators and on an application to spectral variation, Aequations Math. 41(1991), 70-78.
  • 8J. G. Sun, Perturbation bounds for the cholesky and QR factorizations, BIT, 31(1991),341-352.
  • 9C.Davis and W.N.Kahan, The rotation of eigenvectors by a perturbation, iii, SIAM J.Numer. Anal., 1(1970), 1-46.
  • 10R. Bhatia, Matrix Analysis, Springer-Verlag, New York, 1997.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部