摘要
正弦函数的弧长公式是无穷交错级数,计算困难且收敛速度慢。为克服这个难题,采用积分定义法发现,弧长随着积分微元个数的增加而递减;再引入曲线拟合的方法得出弧长的表达式,并进行参数检验,对拟合函数求极限就可简便地得出弧长的满意解。
The length formula of sine function is a stagger progression, its calculation is hard and convergence rate is slow. For improvement, the integral definition is used and it is found that the length decreases with the increase of infinitesimal number. Then, the length expression is obtained by introducing the curve fitting. After the coefficient test, the length of limit of fitting function can be worked out satisfactorily.
出处
《温州职业技术学院学报》
2009年第1期50-52,68,共4页
Journal of Wenzhou Polytechnic
关键词
泰勒级数
椭圆积分
曲线拟合
参数检验
Taylor series
Elliptic integral
Curve fitting
Coefficient test