期刊文献+

基于本体学习的个性化网页推荐 被引量:5

Personalized Web Recommending Based on Ontology Learning
下载PDF
导出
摘要 为了高效和便捷地满足用户的信息需求,使用户得到有价值的个性化网页推荐。针对传统个性化技术的不足,提出基于本体学习的个性化网页推荐方法,采用领域本体构建用户的兴趣模型,并采用基于语义本体的相似度算法提高推荐的准确率。实验结果表明,与其他推荐方法相比该算法具有更高的推荐准确率和召回率。
作者 杨学明
出处 《情报杂志》 CSSCI 北大核心 2009年第3期171-174,198,共5页 Journal of Intelligence
基金 国家自然科学基金资助项目"基于规则提取和多级反馈的自适应融合方法研究"(编号:60573056) 湖州师范学院科研项目"基于本体的网络信息智能处理研究"(编号:KX24035)
  • 相关文献

参考文献9

  • 1Pretschner A. Ontology Based Personalized Search[D]. Lawrence, KS: University of Kansas, 1999
  • 2曾春,邢春晓,周立柱.个性化服务技术综述[J].软件学报,2002,13(10):1952-1961. 被引量:394
  • 3Bollacker K D, Lawrence S,Giles C L. Discovery Relevance Scientific Literature on the Web[J]. IEEE Intelligence Systems,2000,15 (2):42 - 77
  • 4邓爱林,左子叶,朱扬勇.基于项目聚类的协同过滤推荐算法[J].小型微型计算机系统,2004,25(9):1665-1670. 被引量:147
  • 5Gruber TR. A Translation Approach to Portable Ontology Specifications[ R]. Technical Report, KSL 92 - 71 ,Knowledge System Laboratory, 1993
  • 6A. Gomez- Perez, Manzano- Macho. A Survey of Ontology Learning Methods and Techniques[J]. OntoWeb Deliverable D1.5,2003
  • 7杨学明,刘柏嵩.基于本体的网络爬虫技术研究[J].情报学报,2007,26(5):723-727. 被引量:7
  • 8Maynard D, Peters W, Li Y. Metrics for Evaluation of Ontology - Based Information Extraction[J]. In Proc. of the EON 2006 Workshop, 2006
  • 9Brank J, Mladenic D, Grobelnik M. : Gold Standard Based Ontology Evaluation Using Instance Assignment [ J ]. In Proc. of the EON 2006 Workshop,2006

二级参考文献70

  • 1Schafer J B, Konstan J A and Riedl J. Recommender systems in E-Commerce[C]. In: ACM Conference on Electronic Commerce(EC99), 1999, 158-166.
  • 2Breese J, Hecherman D and Kadie C. Empirical analysis of predictive algorithms for collaborative filtering[C]. In:Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence(UAI-98), 1998, 43-52.
  • 3Schafer J B, Konstan J A and Riedl J. E-Commerce recommendation applications [J]. Data Mining and Knowledge Discovery,2001, 5 (1-2): 115-153.
  • 4Goldberg D, Nichols D, Oki B M and Terry D. Using collaborative filtering to weave an information tapestry[J]. Communications of the ACM, 1992,35(12):61-70.
  • 5Resnick P, Iacovou N, Suchak M, Bergstrom P and Riedl J.Grouplens. an open architecture for collaborative filtering of netnews[C]. In: Proceedings of ACM CSCW' 94 Conference on Computer-Supported Cooperative Work, 1994,175-186.
  • 6Shardanand U and Maes P. Social information filtering: algorithms for automating ''Word of Mouth'' [C]. In Proceedings of ACM CHI' 95 Conference on Human Factors in Computing Systems, 1995, 210-217.
  • 7Hill W, Stead L, Rosenstein M and Furnas G. Recommending and evaluating choices in a virtual community of Use[C]. In:Proceedings of CHI' 95, 1995,194-201.
  • 8Sarwar B, Karypis G, Konstan J and Riedl J. Item-based collaborative filtering recommendation algorithms[C]. In:Proceedings of the Tenth International World Wide Web Conference, 2001,285-295.
  • 9Chickering D and Hecherman D. Efficient approximations for the marginal likelihood of bayesian networks with hidden variables[J]. Machine Learning, 1997, 29, 181-212.
  • 10Dempster A, Laird N and Rubin D. Maximum likelihood from incomplete data via the EM algorithm[J]. Journal of the Royal Statistical Society, 1977, 38(1): 1-38.

共引文献538

同被引文献32

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部