期刊文献+

基于多蚁群的无线传感器网络路由算法 被引量:1

Multiple Ant Colony-based Wireless Sensor Networks Routing Algorithm
下载PDF
导出
摘要 无线传感器网络的快速发展,对于其路由协议有了更高的要求,关键是在节省能耗的情况下提高数据传输效率。提出了一种基于多蚁群无线传感器网络路由算法,采用多种群并行搜索,并在种群中采用基于目标函数值得启发式信息素分配策略和根据目标函数自动调整蚂蚁搜索路径,利用蚁群的分布式特点,通过有限寿命蚂蚁的协作在源节点与目的节点之间的运动获取主路径和备选路径,然后根据节点信息适时更新路由表。仿真结果显示MACRA降低了能耗,延长了网络寿命。 The development of wireless sensor network routing is being faced with the challenges of saving energy, improving reliability and increasing the lifetime of the network. In this paper, a Multiple Ant Colony based Routing Algorithm (MACRA) is proposed for routing optimization designing, in which the communication messages sent by nodes for searching the optimal route are treated as ants with limited life-span. Through the ants' movement and Populations' cooperation, the main routing path and multiple candidate routing paths can be distributedly obtained. The simulation results show the validity of MACRA.
出处 《火力与指挥控制》 CSCD 北大核心 2009年第3期63-66,共4页 Fire Control & Command Control
基金 国家自然科学基金(60634030) 新世纪优秀人才基金 校英才计划的基金项目
关键词 无线传感器网络 蚁群算法 路由 分布式算法 wireless sensor networks ,multiple ant colony algorithm ,routing,distributed algorithm
  • 相关文献

参考文献7

  • 1Marco D. Ant System: Optimization by a Colony of Cooperating Agents [J ]. IEEE Transactions on Systems, Man, and Cybernetics-Part B, 1996, 26 (1):29-41.
  • 2Kassabalidis I, EI-Sharkawi M A, Marks R J. Swarm Intelligence for Routing in Communication Networks [ A ]. Global Telecommunications Conference[C], 2001,6(6) : 3613-3617.
  • 3Akkaya K, Younis M. A Survey of Routing Protocols in Wireless Sensor Networks [J]. Elsevier Ad Hoc Network Journal, 2005, 3 (3) : 325-349.
  • 4Schoonderwoerd R,Holland O,Bruten J,et al. Ants for Load Balancing in Telecommunication Networks [Z]. Ewlett Packard Lab. , Bristol, U. K. , Tech. Rep, 1996.
  • 5Cianei C M, Trifa V, Martinoli A. Thresholdbased Algorithms for Power-aware Load Balancing in Sensor Networks [A ]. Swarm Intelligence Symposium. Proceedings 2005[C],2005:349-356.
  • 6Li N, Hou J C. Topology Control in Heterogeneous Wireless Networks: Problems and solutions [J]. Computer and Communications Societies, 2004 (1) : 232-243.
  • 7Brank J, Middendorf M, Schneider F. Improve Heuristics and a Genetic Algorithm for Finding Short Supersequences[J]. OR-Spektrum, 1998, 20 (1) :39-40.

同被引文献5

  • 1M.Dorigo and L.Gambardella,"Ant colony system:a cooperative learning approach to the traveling salesman problem,"IEEE Trans.On Evolutionary Computation,Vol.1,pp.53-66,Apr.1997.
  • 2G.Chen,T.D.Guo,W.G.Yang and T.Zhao,"An improved ant based routing protocol in wireless sensor networks,"Proc.of International Conference on Collaborative Computing:Networking.Applications and Worksharing,pp.1-7.Nov.2006.
  • 3L.Juan.S.Chen and Z.Chao,"Ant system based anycast Routing in wireless sensor networks,"Proc.of the International Conference on Wireless Communications,Networking and Mobile Computing(WiCom2007),pp.2420-2423,Sept 2007.
  • 4刘徐迅,曹阳,邹学玉,秦亮杰.一种无线传感器网络能量平衡路由[J].华中科技大学学报(自然科学版),2008,36(2):95-98. 被引量:5
  • 5杨靖,熊伟丽,徐保国.无线传感器网络中基于蚁群算法的路由算法[J].计算机工程,2009,35(6):4-6. 被引量:11

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部