摘要
针对受加性噪声干扰的语音信号,采用基于小波变换的Kalman滤波方法,提出一种有效的语音增强方法.分析在实际处理中所遇到的二进小波变换、滤波参数估计、Kalman滤波发散等问题.语音增强的效果采用信噪比来进行评估.仿真实验表明在加性噪声为高斯白噪声和色噪的情况下,该方法均具有较好的有效性.
Using kalman filter model based on wavelet transform, an efficient speech enhancement algorithm is proposed aiming at the speech signal with additive noise. Dyadic wavelet transform, parameter estimation for Kalman filter model and the divergence of Kalman filter are analyzed in detail. The quality of the resulting enhanced speech is evaluated by means of signal to noise ratio (SNR). Simulation results indicate that the proposed method is valid under white Gaussian noise and colored noise.
出处
《模式识别与人工智能》
EI
CSCD
北大核心
2009年第1期28-31,共4页
Pattern Recognition and Artificial Intelligence