期刊文献+

一种基于遗传算法的移动机器人自定位方法 被引量:8

A Genetic Algorithm Based Autonomous Localization Strategy for Mobile Robots
原文传递
导出
摘要 针对移动机器人定位研究中的位姿跟踪、全局定位和"绑架"三类问题,提出一种基于遗传算法的移动机器人自定位方法.设计基于位置相似度的种群适应度计算方法,利用实值编码方式实现种群的交叉、变异,有效提高算法的实时性.针对机器人定位过程中的"绑架"现象,在常规遗传算法的基础上引入种群发散算子,减小种群匮乏效应.在此基础上,利用机器人运动模型更新种群状态实现机器人的连续定位.在实际室内环境进行机器人定位实验,证实本文算法的有效性. Aiming at the three main problems in localization of mobile robots, position tracking, global localization and kidnapped problem, an autonomous localization strategy based on genetic algorithm is proposed. A fitness function is designed based on the similarity of position. The real-coded method is used in the crossover and the mutation steps to improve the real-time ability of the algorithm. For the kidnapped problem, a scattering mechanism is introduced into the regular genetic algorithm. Thus, the population impoverishment problem is largely alleviated. Subsequently, the population state is updated with the kinematic model to achieve continuous localization of mobile robots. The experimental results of indoor environment demonstrate the validity of the proposed localization strategy.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2009年第1期142-147,共6页 Pattern Recognition and Artificial Intelligence
基金 教育部新世纪优秀人才支持计划资助项目(No.NCET-06-0210)
关键词 移动机器人 全局定位 “绑架”问题 遗传算法 Mobile Robots, Global Localization, Kidnapped Problem, Genetic Algorithm
  • 相关文献

参考文献9

  • 1Thrun S, Fox D, Burgard W, et al. Robust Monte Carlo Localization for Mobile Robots. Artificial Intelligence, 2001, 128 ( 1 ) : 99 - 141,143
  • 2Kwon S J, Yang K W, Park S. An Effective Kalman Filter Localization Method for Mobile Robots//Proc of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing, China, 2006:1524 - 1529
  • 3Fox D, Burgard W, Thrun S. Markov Localization for Mobile Robots in Dynamic Environments. Journal of Artificial Intelligence Research, 1999, 11:391-427
  • 4Fox D, Burgard W, Dellaert F, et al. Monte Carlo Localization: Efficient Position Estimation for Mobile Robots//Proc of the National Conference on Artificial Intelligence. Orlando, USA, 1999:343 - 349
  • 5Leonard J J, Durrant-Whyte H F. Mobile Robot Localization by Tracking Geometric Beacons. IEEE Trans on Robotics and Automation, 1991, 7(3) : 376 -382
  • 6Wijk O, Christensen H I. Triangulation-Based Fusion of Sonar Data with Application in Robot Pose Tracking. IEEE Trans on Robotics and Automation, 2000, 16(6) : 740 -752
  • 7玄光男 程润伟.遗传算法与工程优化[M].北京:清华大学出版社,2004..
  • 8Rofer T, Jangle M. Vision-Based Fast and Reactive Monte Carlo Localization//Proc of the IEEE Conference on Robotics and Automation. Taipei, China, 2003, I : 856-861
  • 9Rekleitis I, Dudek G, Milios E. Probabilistic Cooperative Localization and Mapping in Practice// Proc of the IEEE Conference on Robotics and Automation. Taipei, China, 2003, II: 1907 - 1912

共引文献62

同被引文献90

引证文献8

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部