期刊文献+

自反Banach空间中的约束凸向量优化问题的弱有效解集的非空有界性的刻画(英文) 被引量:4

Characterizing Nonemptiness and Boundedness of Weak Efficient Solution Set for Cosntrained Convex Vector Optimization in Reflexive Banach Space
下载PDF
导出
摘要 本文首先研究无限维自反Banach空间中的锥约束凸向量优化问题的弱有效解集的非空有界性的各种刻画.然后将获得的结果用于研究一类罚函数方法的收敛性. In this paper, we first characterize the nonemptiness and boundedness of the weakly efficient solution set of a cone-constrained convex vector optimization problem in an infinite-dimensional reflexive Banach space. Then, we apply the characterizations to the convergence analysis of a class of penalty methods.
出处 《运筹学学报》 CSCD 2009年第1期51-60,共10页 Operations Research Transactions
基金 supported by the National Science Foundation of China and Shanghai Pujiang Program.
关键词 运筹学 向量优化 弱有效解 锥约束优化 罚函数方法 Operations research, vector optimization, weakly efficient solution, cone-constrained optimization, penalty method
  • 相关文献

参考文献6

  • 1Deng, S., Characterizations of the nonemptiness and compactness of solution sets in convex vector optimization, Journal of Optimization Theory and Applications, Vol. 96, pp:123-131, 1998.
  • 2Babazan, F. F., and Bazan, F. F., Vector equilibrium problems under asymptotic analysis, Journal of Global Optimization, Vol.26, pp. 141-166, 2003.
  • 3Deng, S., Characterizations of the nonemptiness and boundedness of weakly efficient solution sets of convex vector optimization problems in real reflexive banach spaces, Journal of Optimization Theory and Applications, accepted.
  • 4Huang, X. X., Teo, K. L., and Yang, X. Q., Calmness and exact penalization in vector optimization with cone constraints, Computational Optimization and Applications, Vol.35, pp.47-67, 2006.
  • 5Huang, X. X., and Yang, X.Q., Characterizations of the nonemptiness and compactness of the set of weakly efficient solutions for convex vector optimization and applications, Journal of Mathematical Analysis and Applications, Vol. 264, pp. 270-287, 2001.
  • 6Huang, X. X., Yang, X. Q., and Teo, K. L., Characterizing nonemptiness and compactness of the solution set of a convex vector optimization problem with cone constraints and applications, Journal of Optimization Theory and Applications, Vol. 123, pp. 391-407, 2004.

同被引文献31

  • 1曾德胜,吴泽忠.(F,α,ρ,d)-凸和广义(F,α,ρ,d)-凸性下一类多目标规划问题的对偶[J].四川师范大学学报(自然科学版),2006,29(1):63-66. 被引量:9
  • 2刘小兰,何诣然.Banach空间中数学规划问题的二阶最优性条件[J].四川师范大学学报(自然科学版),2006,29(6):644-647. 被引量:1
  • 3常健,张庆祥.具有广义B-凸函数的非光滑多目标规划的对偶性[J].天津师范大学学报(自然科学版),2007,27(2):58-60. 被引量:4
  • 4杜廷松,张明望.Banach空间上一类非凸向量最优化问题的全局最优性条件[J].河北师范大学学报(自然科学版),2007,31(4):443-445. 被引量:1
  • 5Yu, P. L.. Cone convexity, Cone extreme points, and nondominated solutions in decision problems with multiple objectives[J]. Optim. Theory Appl., 1974,14:319-377.
  • 6Mangasarian, O.L.. A simple characterization of solution sets of convex programs[l]. Operations Research Letters, 1988,7:21 -26.
  • 7Burke, J.V., Ferris, M. Characterization of solution sets of convex programs[J]. Operations Research Letters, 1991,10:57-60.
  • 8Jeyakumar, V., Lee, G. M., Dinh, N. Lagrange multiplier conditions charactering the optional solutions sets of cone-con- strained convex programs[J]. Journal of Optimization Theory and Applications, 2004,123:83-103.
  • 9Deng, S. Characterizations of the nonemptiness and boundedness of weakly efficient solution sets of convex vector optimization problems in real reflexive Banach spaces[J]. Journal of Optimization Theory and Applications, 2009,140:1-7.
  • 10Deng, S. Characterizations of the nonemptiness and compactness of solution sets in convex vector optimization[J]. Journal of Optimization Theory and Applications, 1998,96:123-131.

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部