摘要
本文首先研究无限维自反Banach空间中的锥约束凸向量优化问题的弱有效解集的非空有界性的各种刻画.然后将获得的结果用于研究一类罚函数方法的收敛性.
In this paper, we first characterize the nonemptiness and boundedness of the weakly efficient solution set of a cone-constrained convex vector optimization problem in an infinite-dimensional reflexive Banach space. Then, we apply the characterizations to the convergence analysis of a class of penalty methods.
出处
《运筹学学报》
CSCD
2009年第1期51-60,共10页
Operations Research Transactions
基金
supported by the National Science Foundation of China and Shanghai Pujiang Program.
关键词
运筹学
向量优化
弱有效解
锥约束优化
罚函数方法
Operations research, vector optimization, weakly efficient solution, cone-constrained optimization, penalty method