摘要
设k为正整数,G是简单k连通图.图G的k宽直径,d_k(G),是指最小的整数l使得对任意两不同顶点x,y∈v(G),都存在k条长至多为l的内部不交的连接x和y的路.用C(n,t)表示在圈C_n上增加t条边所得的图.定义h(n,t)=min{d_2(C(n,t))}.本文给出了h(n,2)=[n/2].而且,给出了当t较大时h(n,t)的界.
Let k be a positive integer and G be a k-connected simple graph. The k-wide diameter of graph G, dk(G), is the minimum integer l such that for any two distinct vertices x, y ∈ V(G), there are k (internally) disjoint paths with lengths at most l between x and y. Let C(n,t) be the resulting graph by adding t edges to cycle Cn. Define h(n,t) = min{d2(C(n,t))}. In this paper, we compute h(n,t) and obtain that h(n, 2) = [n/2]. Furthermore, we give the bounds for h(n, t) when t ≥ 3.
出处
《运筹学学报》
CSCD
2009年第1期72-76,共5页
Operations Research Transactions
基金
supported by NNSF of China(No.10771080)
SRFDP of China(No.20070574006)
National Science Foundation DMS-0852452
NNSF of China(No.10701068)
关键词
运筹学
图
网络
最小性
宽直径
Operations research, graph, network, connectivity, wide diameter