期刊文献+

基于sigma点H∞滤波的说话人跟踪方法 被引量:9

Sigma Point H_∞ Filtering Method for Speaker Tracking
下载PDF
导出
摘要 在基于麦克风阵列的说话人跟踪系统中,存在观测方程的非线性程度较强,观测误差的统计特性不易准确描述等问题。本文提出了一种基于sigma点H_∞滤波的说话人跟踪方法。该方法用sigma点转换技术减小观测方程的线性化误差,用H_∞滤波方法降低观测误差不确定性对说话人位置估计的影响,从而提高了说话人跟踪精度,增强了跟踪系统对噪声的鲁棒性。仿真实验结果表明,相对于扩展卡尔曼滤波方法,本文方法在多种噪声条件下可将说话人跟踪误差降低25%以上。 Based on theories of H∞ filtering and sigma point transformation,a sigma point H∞ filtering method is proposed. Since sigma point transformation technique is used instead of Taylor series expansion in the new method, linearization error of high nonlinear system is decreased. Moreover,the noise uncertainty problem is solved by utilizing H∞ filtering method. Compared with existing method for microphone array based speaker tracking system, the estimation accuracy is improved and the system is more robust to measurement error of time difference of arrival (TDOA). Simulation results of a speaker tracking system demonstrate that the proposed method decreases the tracking error by 25% compares to the extended Kalman filter.
出处 《信号处理》 CSCD 北大核心 2009年第3期374-378,共5页 Journal of Signal Processing
基金 国家自然科学基金项目(60772161,60372082) 教育部跨世纪优秀人才基金资助项目。
关键词 说话人跟踪 非线性系统 H∞滤波 sigma点转换 鲁棒性 speaker tracking nonlinear system H∞ filtering sigma point transformation robustness
  • 相关文献

参考文献24

  • 1I. Potamitis, H. Chen and G. Tremoulis. Tracking of multiple moving speakers with multiple microphone arrays [ J ]. IEEE Transactions on Speech and Audio Processing ,2004, 12(5) :520-529.
  • 2M. A. Brandstein. Framework for Speech Source Localization Using Sensor Arrays [ D ]. Ph.D. Thesis, Brown University, Providence, RI, U. S. A, 1995.
  • 3D. Bechler, M. Grimm, and K. Kroschel. Speaker tracking with a microphone array using Kalman filtering [ J ]. Advances in Radio Science,2003,1:113-117.
  • 4T. Dvorkind and S. Gannot. Speaker localization exploiting spatial-temporal information [ A ]. Proceedings of the IEEE International Workshop on Acoustic Echo and Noise Control [ C ]. Kyoto, Japan : IWAENC, 2003 : 295-298.
  • 5S Gannot and T Dvorkind. Microphone array speaker localizers using spatial-temporal information [ J ]. Special Issue " Advances in Muhimicrophone Speech Processing", EURASIP Journal on Applied Signal Processing. 2006, 2006 : 1-17.
  • 6R. van der Merwe, E. Wan, and S. J. Julier. Sigma-point Kalman filte~ for nonlinear estimation and sensor-fusion: applications to integrated navigation [ A ]. Proceedings of the AIAA Guidance, Navigation & Control Conference, Providence, RI, Aug 2004.
  • 7T. Lefebvre, H. Bruyninckx,and J. De Schutter. Comment on 'A new method for the nonlinear transformation of means and covariances in filters and estimators' [ J ]. IEEE Transactions on Automatic Control ,2002,47 ( 8 ) : 1406-1408.
  • 8R. Fitzgerald. Divergence of the Kalman filter [ J]. IEEE Transactions on Automatic Control, 1971,16 (6) :736-747.
  • 9Dan Simon. Optimal State Estimation: Kalman, H∞ , and Nonlinear Approaches [ M ]. New Jersey:John Wiley & Sons Inc, 2006 : 333-391.
  • 10J. Doyle, K. Glover, P. Khargonekar,et al. State-space solutions to standard H2 and H∞ control problems [ J ]. IEEE Transactions on Automatic Control, 1989,24( 8 ) :831-847.

同被引文献66

引证文献9

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部