期刊文献+

修正的PDA算法 被引量:1

Modified PDA Algorithm and Performance Prediction
下载PDF
导出
摘要 在无目标量测条件下,PDA算法用状态预测方差近似替代状态估计方差参与更新,这一近似直接影响了滤波器的跟踪性能。针对以上问题,重新推导了跟踪门内没有源于目标的量测时的状态预测方差表达式,进而得出了正确的状态估计方差的更新公式,得到了修正的PDA(MPDA)。仿真结果表明MPDA不仅在跟踪精度方面有所提高,且对其进行性能估计也更加准确。 With the mistake of covariance update in PDA taken into account,the expression of state predicting variance is derived again before a update formula of state estimation variance is obtained correctly. Then a modified algorithm(MPDA) is proposed as a result. Simulation results show that the MPDA algorithm not only improves tracking precision, but also its performance estimation is more accurate than PDA' s.
出处 《信号处理》 CSCD 北大核心 2009年第3期430-434,共5页 Journal of Signal Processing
基金 国防预研项目(51301050101)资助
关键词 目标跟踪 PDA算法 性能估计 target tracking PDA algorithm performance estimation
  • 相关文献

参考文献11

  • 1Bar-Shalom Y,Tse E. Tracking in a cluttered environment with probabilistic data association [ J ]. Chartered Mechanical Engineer, 1974 : 13-22.
  • 2Houles A, Bar-Shalom Y. Muhisensor tracking of a maneuvering target in clutter [ J ]. IEEE Transactions on Aerospace and Electronic Systems, 1989 : 176-189.
  • 3de Feo M, Graziano A, Miglioli R. Immjpda versus mht and kalman filter with nn correlation: Performance comparison [ J ]. IEE Proceedings : Radar, Sonar and Navigation, 1997, 144(2) :49-56.
  • 4Li X R. Tracking in clutter with strongest neighbor measurements - part i : Theoretical analysis [ J ]. IEEE Transactions on Automatic Control, 1998,43 ( 11 ) : 1560-1578.
  • 5Li X R, Bar-Shalom Y. Theoretical analysis and performance prediction of tracking in clutter with strongest neighbor filters [ C ]. New Orleans, LA, USA, 1995,2758-2763.
  • 6Li X R, Bar-Shalom Y. Performance prediction of the interacting multiple model algorithm [ J ]. IEEE Transactions on Aerospace and Electronic Systems, 1993,29 (3) :755-771.
  • 7Li X R, Bar-Shalom Y. Stability evaluation and track life of the pdaf for tracking in clutter [ J ]. IEEE Transactions on Automatic Control, 1991,36 ( 5 ) :588-602.
  • 8Fortmann T E, Bar-Shalom Y, Scheffe M. Detection thresholds for tracking in clutter - a connection between estimation and signal processing[ J]. IEEE Transactions on Automatic Control, 1985, AC-30 (3) : 221-229.
  • 9Kalata P R. Tracking index : A generalized parameter for alpha minus beta and alpha minus beta minus gamma target trackers [ J ]. IEEE Transactions on Aerospace and Electronic Systems, 1984 ,AES-20(2) : 174-182.
  • 10邱恺,黄国荣,陈天如,杨亚莉.卡尔曼滤波过程的稳定性研究[J].系统工程与电子技术,2005,27(1):33-35. 被引量:22

二级参考文献18

  • 1胡丛玮,刘大杰,姚连璧.带约束条件的自适应滤波及其在GPS定位中的应用[J].测绘学报,2002,31(z1):39-44. 被引量:14
  • 2邱恺,黄国荣,陈天如,杨亚莉.卡尔曼滤波过程的稳定性研究[J].系统工程与电子技术,2005,27(1):33-35. 被引量:22
  • 3AndersonBDO MooreJohnB 卢伯英 译.最佳滤波[M].北京:国防工业出版社,1983(12).149-154.
  • 4Lainiotis D, Sims F. Perforce measure for adaptive Kalman estimators [J]. IEEE Trans. on Automatic Control, 1970, 15(2): 249- 250.
  • 5Sriyananda H A. Simple method for the control of divergence in Kalmanfilter algorithms[J]. Int. J. Control, 1972,16(6):1101-1106.
  • 6Mehra R K. Approaches to adaptive filtering[J]. IEEE Trans. on Automatic Control, 1972, 17(4) :693 - 698.
  • 7Son L H, Anderson B D O. Design of Kalman filters using signal model output statistics[J]. Proc IEE, 1973,120(2) :312 - 318.
  • 8Tarn T, Zuborsky J. A practical non-diverging filter[J]. AIAA Jour.,1970, 9:767.
  • 9Quigley A L C. An approach to the control of divergence in Kalman filter algorithms[J]. Int. J. Cont., 1973, 17:741-746.
  • 10Yao Joseph Z. Model errors in Kalman filter and simple correction techniques. Acoustics, speech, and signal processing[A]. IEEE International Conference on ICASSP '77, 1977,2: 708- 712.

共引文献28

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部