期刊文献+

利用自组织映射SOM实现电力系统暂态稳定评估结果可视化 被引量:2

SOM based visualization of power system transient stability assessment results
下载PDF
导出
摘要 自组织映射SOM(self-organizingmap)具有拓扑关系保持的优良性能,可应用于降维可视化。该文基于SOM实现暂态稳定评估结果的可视化。采用经典的SOM算法分别对原始特征和特征选取后的IEEE16机暂态稳定分类数据进行可视化,表明了可视化的可行性以及特征选取的重要性。采用一种改进的SOM算法—DPSOM算法,提高了可视化的性能,得到了满意的暂态稳定评估分类可视化结果。 Due to the topology-preserving nature,the SOM(self-organizing map) algorithm can be used to visualize the high-dimensional data.In this paper,the visualization of power system transient stability assessment results which based on SOM is realized.Firstly,for the IEEE 16 generators transient stability classified data, the original feature data and the feature selected data are visualized respectively by using the classic SOM algorithm,then the practicability of visualization and the importance of feature selection are explained. Finally, an improved SOM algorithm--DPSOM algorithm is adopted,which improves the performance of visualization and gets the satisfied results of visualization.
出处 《电力系统保护与控制》 EI CSCD 北大核心 2009年第5期41-46,共6页 Power System Protection and Control
基金 国家973重点基础研究发展规划资助项目(G1998010301)~~
关键词 暂态稳定评估 可视化 SOM DPSOM transient stability assessment data visualization SOM DPSOM
  • 相关文献

参考文献6

二级参考文献52

  • 1王晓红,王晓茹,李群湛.二分类数据的分类结果可视化算法[J].西南交通大学学报,2006,41(3):329-334. 被引量:3
  • 2T Kohonen.Self-Organizing Maps[M].Brelin/Heidelberg,Germany:Springer,1995,30.
  • 3(美)MartinTHagen HowardBDemuth MarkHBeale 戴葵译.神经网络设计[M].北京:机械工业出版社,2002-9..
  • 4A Ultsch,H P Siemon.Kohonen's Self-Organizing Feature Maps for Exploratory Data Analysis.in Proc[C].of INNC'90,International Neural Network Conference,Dordrecht,Netherlands,1990.305-308.
  • 5[1]Hsiao-Dong Chiang,Cheng-Shan Wang,Flueck A.J.Look-ahead voltage and load margin contingency selection functions for large-scale power systems [J].IEEE Transactions on power systems,1997,12(1):173-180.
  • 6[2]N.Yorino,H.Q.Li,S.Harada,et al.A Method of voltage stability evaluation for branch and generator outage contingencies [J].IEEE Transactions on power systems,2004,19(1):252-260.
  • 7[4]S.Greene,I.Dobson,F.L.Alvarado.Sensitivity of the loading margin to voltage collapse with respect to arbitrary parameters [J].IEEE Transactions on power systems,1997,12(1):262-273.
  • 8[5]C.A.Canizares,N.Mithulananthan,A.Berizzi,et al.On the linear profile of indices for the prediction of saddle-node and limit-induced bifurcation points in power systems [J].IEEE Transactions on circuits and systems-I,2003,50(12):1588-1595.
  • 9[10]Venkatasubramanian V,Schattler H,Zaborszky J.Local bifurcations and feasibility regions in differential algebraic systems[J].IEEE Trans.Automat.Contr,1995,40(12):1992-2013.
  • 10[11]Venkatasubramanian V,Schattler H,Zaborszky J.Dynamics of large constrained nnonlinear systems-a taxonomy theory[J].Proceedings of the IEEE 1995,83(11):1530-1561.

共引文献75

同被引文献26

  • 1马骞,杨以涵,刘文颖,齐郑,郭金智.多输入特征融合的组合支持向量机电力系统暂态稳定评估[J].中国电机工程学报,2005,25(6):17-23. 被引量:138
  • 2杨占华,杨燕.SOM神经网络算法的研究与进展[J].计算机工程,2006,32(16):201-202. 被引量:78
  • 3向丽萍,王晓红,王建,项杨,谢桦,王晓茹.基于支持向量机的暂态稳定分类中的特征选择[J].继电器,2007,35(9):17-21. 被引量:10
  • 4Sobajic D J, Pao Y. Artificial neural-net based dynamic security assessment for electric power systems[J]. IEEE Transactions on Power Systems, 1989, 4 ( 1 ) : 220-228.
  • 5Rovnyak S, Kretsinger S, Thorp J, etal. Decision trees for real-time transient stability prediction[J]. IEEE Transactions on Power Systems, 1994, 9( 3 ): 1417- 1426.
  • 6Pavella M. Power system transient stability assessment-traditional vs modem methods[J]. Control Engineering Practice, 1998, 6 (10): 1233-1246.
  • 7Jayasekara B, Annakkkage U D. Transient security assessment using multivariate polynomial approximation[J]. Electric Power Systems Research, 2007, 77 (5-6) : 704-711.
  • 8Wolpert D H. Stacked generalization[J]. Neural Networks, 1992, 5 (2) : 241-259.
  • 9Witten I H, Frank E. Data mining: practical machine learning tools and techniques[M]. 2nd edition. Singapore: Elsevier, 2005.
  • 10Platt J. Probabilities for SV machines[M]. Advances in Large Margin Classifiers, MIT Press, 2000: 61-74.

引证文献2

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部