期刊文献+

风险谱函数的设计与选择 被引量:2

Construction and choice of risk spectrum function
下载PDF
导出
摘要 研究了风险谱函数的构造及谱风险度量在金融市场中的应用。根据风险厌恶系数和效用函数理论,提出了一种风险谱函数的设计构造方法,得到了指数风险谱函数和幂风险谱函数。实证分析表明,运用这两种谱函数所得到的谱风险度量的结果,差别并不大。最后,提出了以谱风险度量为目标函数的投资组合优化配置模型,并讨论了模型的求解结果。 We focus on the construction of risk spectra and the application of spectral risk measures to the financial markets. According to the risk aversion coefficient and the utility theory, we demonstrate a method to construct a risk spectrum and set up two forms of spectra, the exponent risk spectrum and the power risk spectrum. Subsequent empirical tests showed that different selections of the two functions have a negligible effect on the value of the spectral risk measure. Finally, we optimize the allocation of a portfolio based on spectral risk measure. The optimization results are fully explained.
出处 《北京化工大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第2期105-109,共5页 Journal of Beijing University of Chemical Technology(Natural Science Edition)
关键词 谱风险度量 风险厌恶系数 指数风险谱函数 幂风险谱函数 投资组合配置 spectral risk measure risk aversion coefficient exponent risk spectrum power risk spectrum portfolio selection
  • 相关文献

参考文献8

  • 1Crouhy M,Galai D,Mark R.风险管理[M].曾刚,罗晓军,卢爽,译.北京:中国财政经济出版社,2005.
  • 2Artzner P, Delbaen F, Eher J M, et al. Coherent measures of risk [J ]. Mathematical Finance, 1999, 9 (3) : 203 - 228.
  • 3Acerbi C. Spectral measures of risk: A coherent representation of subjective risk aversion I J]. Journal of Banking and Finance, 2002, 26(7) : 1505 - 1518.
  • 4Szego G. Measures of risk [J ]. Journal of Banking and Finance, 2002, 26(7) : 1253 - 1272.
  • 5Acerbi C, Tasche D. On the coherence of expected shortfall[J]. Journal of Banking and Finance, 2002, 26(7): 1487 - 1503.
  • 6Adam A, Houkari M, Laurent J P, Spectral risk meastares and portfolio selection [J ]. Journal of Banking and Finance, 2008, 32(9) : 1870 - 1882.
  • 7Tasche D. Expected shortfall and beyond[J]. Journal of Banking and Finance, 2002, 26(7) : 1519 - 1533.
  • 8Cotter J, Dowd K. Exponential spectral risk measures [J]. The Icfai Journal of Financial Economics, 2007, 5 (4):57-66.

同被引文献18

  • 1徐国祥,吴泽智.我国指数期货保证金水平设定方法及其实证研究——极值理论的应用[J].财经研究,2004,30(11):63-74. 被引量:20
  • 2李晓渝,宋曦,潘席龙.基于极值理论方法的中国股指期货保证金设定的实证研究[J].统计与信息论坛,2006,21(4):42-47. 被引量:10
  • 3Longin F. Optimal margins in future markets: A parametric extreme-based approach[C]//Proceedings, Ninth Chicago Board of Trade Conference on Futures and Options, Bonn, 1995.
  • 4Cotter J. Testing distribution models for the Irish equity market [J]. Economic and Social Review, 1998(29) : 257-269.
  • 5Acerbi C. Spectral measures of risk.. A coherent representation of subjective risk aversion[J]. Journal of Banking and Finance,2002,26(7) :1 505-1 518.
  • 6Cotter J,Dowd K. Extreme spectral risk measures: Anapplication to futures clearinghouse margin requirements[J]. Journal of Banking Finance, 2006, 30(12) :3 469-3 485.
  • 7Balkema H. Statistical inference using extreme order statistics [J]. Annals of Statistics, 1974,3 : 119-131.
  • 8Artzner P, Delbaen F, Eber J M, et al. Coherent meas- ures of risk [ J]. Mathematical Finance, 1999, 9 (3) : 203 -228.
  • 9Uryasev S. Conditional value-at-risk: optimization algo- rithms and applications [ C ] //Proceeding of Computa- tional Intelligence for Financial Engineering, NewYork, USA, 2000.
  • 10Sezgo G. Measures of risk [ J]. European Journal of Op- erational Research, 2005, 163 : 5-19.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部