期刊文献+

On a Class of Weakly-Berwald (α,β)-Metrics 被引量:1

On a Class of Weakly-Berwald (α,β)-Metrics
下载PDF
导出
摘要 In this paper, we study an important class of (α,β)-metrics in the form F = (α + β)m+1/αm on an n-dimensional manifold and get the conditions for such metrics to be weakly-Berwald metrics, where α = aij(x)yiyj is a Riemannian metric and β = bi(x)yi is a 1-form and m is a real number with m = 1,0,1/n. Furthermore, we also prove that this kind of (α,β)-metrics is of isotropic mean Berwald curvature if and only if it is of isotropic S-curvature. In this case, S-curvature vanishes and the metric is weakly-Berwald metric. In this paper, we study an important class of (α,β)-metrics in the form F = (α+β)^m+1/α^m on an n-dimensional manifold and get the conditions for such metrics to be weakly- Berwald metrics, where α = √aij(x)y^iy^j is a Riemannian metric and β = bi(x)y^i is a 1-form and m is a real number with m ≠ -1,0,-1/n. Furthermore, we also prove that this kind of (α,β)-metrics is of isotropic mean Berwald curvature if and only if it is of isotropic S-curvature. In this case, S-curvature vanishes and the metric is weakly-Berwald metric.
出处 《Journal of Mathematical Research and Exposition》 CSCD 2009年第2期227-236,共10页 数学研究与评论(英文版)
基金 the National Natural Science Foundation of China (No. 10671214) the Natural Science Foundation of Chongqing Education Committee (No. KJ080620) the Science Foundation of Chongqing University of Arts and Sciences (No. Z2008SJ14).
关键词 mean Berwald curvature weakly-Berwald metric S-CURVATURE (α β)-metric. 弱Berwald 度量 S曲率 数学分析
  • 相关文献

参考文献1

二级参考文献10

  • 1Hamel G. Uber die Geometrien in denen die Geraden die Kurzesten sind. Math Ann, 1903, 57:231-264
  • 2Hashiguchi M, Ichijyo Y. Randers spaces with rectilinear geodesics. Rep Fac Sci Kagoshima Univ (Math Phys & Chen), 1980,13: 33-40
  • 3Hilbert D. Mathematical Problems. Bull Amer Math Soc, 2001,37 407-436; Reprinted from Bull Amer Math Soc, 1902,8:437-479
  • 4Kitayama M, Azuma M, Matsumoto M. On Finsler spaces with (α,β)-metric. Regularity, geodesics and main scalars. J of Hokkaido Univ of Education (Section II A), 1995,461): 1-10
  • 5Matsumoto M. A slope of a mountain is a Finsler surface with respect to a time measure. J Math Kyoto Univ, 1989, 29:17-25
  • 6Matsumoto M. Finsler spaces with (α,β)-metric of Douglas type. Tensor N S, 1998,60:123-134
  • 7Chern S S, Shen Z. Riemann-Finsler Geometry. Singopore: World Scientific, 2005
  • 8Shen Z, Civi Yildirim G. On a class of projectively flat metrics with constant flag curvature. Canadian J of Math, to appear.
  • 9Shen Z. Projectively flat Randers metrics of constant flag curvature. Math Ann, 2003,325:19-30
  • 10Shen Z. Landsberg curvature, S-curvature and Riemann curvature. In: A Sample of Riemann-Finsler Geometry. MSRI Series, Vol 50. Cambridge: Cambridge University Press, 2004

共引文献4

同被引文献9

  • 1Bacso S, Cheng X Y, Shen Z M. Curvature properties of (a, /3)-metrics [J]. Advanced Studies inPure Mathematics, Math. Soc. Japan, 2007, 48: 73-110.
  • 2Bacso S, Yoshikawa R. Weak Berwald spaces [J]. Publ. Math. Debrecen, 2002,61: 219-231.
  • 3Cheng X Y, Shen Z M. A class of Finsler metrics with isotropic 5-curvature [J]. Israel. J. math,2009,169: 317-340.
  • 4Chern S S, Shen Z M. Riemann-Finsler geometry [M]. Beijing: World Scientific Publishers, 2005.
  • 5Cui Ningwei. On the 5-curvature of some (a, /3)-metrics [J]. Acta. Math. Sci., 2006, 26A (7): 1047-1056.
  • 6Li B L, Shen Y B, Shen Z M. On a class of Douglas metrics [J]. Studia Scientiarum MathematicarumHungarica, 2009, 46(3): 355-365.
  • 7Shen Yibing, Yu Yaoyong. On projectively related Randers metrics [J]. Int. J. Math., 2008, 19(5):503-520.
  • 8程新跃,鲁从银.Two Kinds of Weak Berwald Metrics of Scalar Flag Curvature[J].Journal of Mathematical Research and Exposition,2009,29(4):607-614. 被引量:2
  • 9Xin Yue CHENG.On (α,β)-Metrics of Scalar Flag Curvature with Constant S-curvature[J].Acta Mathematica Sinica,English Series,2010,26(9):1701-1708. 被引量:3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部