期刊文献+

The Torsion-Freeness of Partially Ordered K0-Groups for a Class of Exchange Rings 被引量:3

The Torsion-Freeness of Partially Ordered K0-Groups for a Class of Exchange Rings
下载PDF
导出
摘要 A ring R is called orthogonal if for any two idempotents e and f in R, the condition that e and f are orthogonal in R implies the condition that [eR] and [fR] are orthogonal in K0(R)+, i.e., [eR]∧[fR] = 0. In this paper, we shall prove that the K0-group of every orthogonal, IBN2 exchange ring is always torsion-free, which generalizes the main result in [3]. A ring R is called orthogonal if for any two idempotents e and f in R, the condition that e and f are orthogonal in R implies the condition that [eR] and [fR] are orthogonal in K0(R)^+, i.e., [eR]∧[fR] = 0. In this paper, we shall prove that the K0-group of every orthogonal, IBN2 exchange ring is always torsion-free, which generalizes the main result in [3].
机构地区 Faculty of Science
出处 《Journal of Mathematical Research and Exposition》 CSCD 2009年第2期367-370,共4页 数学研究与评论(英文版)
基金 the National Natural Science Foundation of China (No. 10571080) the Natural Science Foundation of Jiangxi Province (No. 0611042) the Science and Technology Projiet Foundation of Jiangxi Province (No. G[20061194) and the Doctor Foundation of Jiangxi University of Science and Technology.
关键词 IBN2 ring Orthogonal ring Ko-group Partially ordered Abelian group l-group. 替换环 偏序Ko群 无扭性 IBN2环 正交环
  • 相关文献

参考文献5

  • 1DARNEL M R. Theory of Lattice-Ordered Groups [M]. Marcel Dekker, Inc., New York, 1995.
  • 2GOODEARL K R. Von Neumann Regular Rings [M]. Second Edition. Robert E. Krieger Publishing Co., Inc., Malabar, FL, 1991.
  • 3LU Xinmin, QIN Hourong. Boolean algebras, generalized abelian rings, and Grothendieck groups [J]. Gomm. Algebra, 2006, 34(2): 641-659.
  • 4WARFIELD R B JR. Exchange rings and decompositions of modules [J]. Math. Ann., 1972, 199: 31-36.
  • 5WU Tongsuo, TONG Wenting. Finitely generatecl projective modules over exchange rings [J]. Manuscripta Math., 1995, 86(2): 149-157.

同被引文献7

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部