期刊文献+

分次环与局部化 被引量:2

Graded Rings and Localizations
原文传递
导出
摘要 设G是有限群,R是有单位元的G-型分次环,S是包含在R的所有齐次元素组成的集合内的乘法封闭子集,S=x∈Gae(gx,x)a∈S,Deg(a)=g∈G{},S==x∈Gae(gx,xh)a∈S,Deg(a)=g∈G,h∈G{},MG(R)表示以G的元作为行列标的|G|阶矩阵环.本文证明了R关于S满足左Ore条件当且仅当R#G关于S满足左Ore条件当且仅当MG(R)关于S=满足左Ore条件,而且,S-1(R#G)≌(S-1R)#G和S=,-1(MG(R))≌MG(S-1R). Suppose G is a finite group, R is a graded ring of type G with identity and S is a multiplicatively closed subset of the set consisting of all homogeneous elements of R. Let =x∈Gae(gx,x)a∈S, Deg (a)=g∈G] and S==x∈ G ae (gx,xh)a ∈S, Deg (a)=g∈ G, h∈ G. M G(R) denotes the matrices over R with the rows columns indexed by elements of G. In this paper, we prove that R satisfies the left Ore condition with S if and only if R# G satisfies the left Ore condition with  if and only if M G(R) satisfies the left Ore condition with S=. Inaddition, we obtained the following results:  -1 (R# G) is isomorphic to (S -1 R)# G and S=, -1 (M G(R)) is isomorphic to M G(S -1 R) as rings.
作者 张圣贵
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 1998年第1期137-144,共8页 Acta Mathematica Sinica:Chinese Series
基金 福建省自然科学基金
关键词 分次环 局部化 左Ore条件 有限群 Graded rings, Localization, Left Ore conditions
  • 相关文献

参考文献1

  • 1Liu Shaoxue,Perspectives in ring theory,1988年,299页

同被引文献2

  • 1Shenggui Zhang,Sanyang Liu.An application of the Gr6bner basis in computation for the minimal polynomials and inverses of block circulant matrices[J].Linear Algebra and its Applications,2002,347:101~114.
  • 2Bo Stenstr6m.Rings of quotients[M].Berlin;Heidelberg,New York:Springer-verlag,1975.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部