摘要
考虑回归模型:yi=xiβ+g(ti)+σiei,1in,其中σ2i=f(ui),(xi,ti,ui)是固定非随机设计点列,f(·)和g(·)是未知函数,β是待估参数,ei是随机误差.对文[1]给出的基于g(·)及f(·)的一类非参数估计的β的最小二乘估计^βn和加权最小二乘估计βn,我们在适当条件下证明了它们的强相合性.
Consider the heteroscedastic regression model: y i=x iβ+g(t i)+σ ie i,1in , where σ 2 i=f(u i) . Here the design points (x i,t i,u i) are known and nonrandom, g and f are unknown functions, and e i is an unobserved disturbance. For the least squares estimator n and the weighted least squares estimator n of β given in based on the family of nonparametric estimates of g(·) and f(·) , we establish their strong consistency under suitable conditions.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
1998年第2期429-438,共10页
Acta Mathematica Sinica:Chinese Series
基金
安徽省教委自然科学基金
关键词
部分线性模型
最小二乘估计
估计
强相合性
Partial linear model, Least squares estimator, Weighted least squares estimator, Strong consistency