摘要
设X是有Fréchet可微范数的一致凸Banach空间,C是X的有界闭凸子集,T:C→C是一个渐近非扩张映象.证明了,如果{xn:n≥1}是T的几乎轨道,则序列{x0}弱几乎收敛到集合∩∞n=1co{xi:i≥n}∩F(T)的唯一点,其中,F(T)是T的不动点集.
Let X be a uniformly convex Banach space with a Fréchet differentiable norm, C a bounded closed convex subset of X and T:C→C an asymptotically nonexpansive mapping. It is shown that if {x n:n≥1} is an almost orbit of T, then the sequence {x n} is weakly almost convergent to the unique point of the set ∩∞n=1 co {x i:i≥n}∩F(T), where F(T) is the fixed point set of T.
关键词
几乎轨道
渐近非扩张映象
不动点
巴拿赫空间
almost orbit, asymptotically nonexpansive mapping, weakly almost convergent.