期刊文献+

最大值约束下的多最小支持度关联规则挖掘 被引量:2

Mining Association Rules with Multiple Minimum Supports Using Maximum Constraints
下载PDF
导出
摘要 在以前的算法中对于所有的项目或者是项目集合都是使用单一的最小支持度。但是在实际的应用中,不同的项目就需要不同的最小支持度。提出一个简单的算法,根据Apri-ori算法在最大值约束条件下来找到最大项集和关联规则,并且根据Ming-Cheng Tseng中提出的confidence-lift模式得出有兴趣的关联规则。 Most of the previous approaches set a single minimum support threshold for all the items or itemsets. But in real applications, different items may have different criteria to judge its importance. Proposes a simple algorithm based on the Apriori approach to find the largeitemsets and association rules under this constraint, then gets the interesting association rules using confidence-lift pattern.
出处 《现代计算机》 2009年第2期9-10,34,共3页 Modern Computer
基金 安徽省自然科学基金项目(No070412051)
关键词 数据挖掘 多最小支持度 关联规则 最大值约束 Data Mining Multiple Minimum Supports Association Rule Maximum Constraint
  • 相关文献

参考文献7

  • 1杜鹢.数据挖掘中关联规则挖掘方法的研究与应用.解放军理工大学.2000-6
  • 2高杰,李绍军,钱锋.挖掘关联规则中AprioriTid算法的改进[J].计算机工程与应用,2007,43(7):188-190. 被引量:13
  • 3李芸.数据挖掘中关联规则挖掘方法的研究及应用[J].2007
  • 4L. Zhou, S. Yau. Efficient Association Rule Mining Among Both Frequent and Infrequent Items, Computers and Mathematics with Applications (2007), doi: 10.1016/j.camwa. 2007.02.010
  • 5R. Agrawal, T. Imielinske and A. Swami Mining Association Rules between Sets of Items in Large Databases, Proceedings of the ACM SIGMOD International Conference on the Management of Data, Washington, 1993, 207-216
  • 6Yeong-Chyi Lee Tzung-Pei Hong Wen-Yang Lin. Mining Association Rules with Multiple Minimum Supports Using Maximum Constraints Intemet. J. Approx. Reason. 40 (2005) 44 - 54
  • 7Ming-Cheng Tseng Wen-Yang Lin. Efficient Mining of Generalized Association Rules with Non-Uniform Minimum Support Data & Knowledge Engineering 62 (2007) 41-64

二级参考文献6

  • 1王益玲,赵英凯.智能故障诊断系统中的知识发现方法[J].控制工程,2004,11(5):406-408. 被引量:5
  • 2Agrawal R,Imielinski T,Swami A.Mining association rules between sets of items in large databases[C]//Bunemuu P,Jajodia S.Proceedings of the 1993 ACM SIGMOD Conference on Management of Data.New York,NY:ACM Press,1993:207-216.
  • 3Agrawal R,Mannila H,Srikant R,et al.Fast discovery of association rules[M]//Fayyad M,Piatetsky-Shapiro G,Smyth P.Advances in Knowledge Discovery and Data Mining.Menlo Park,CA:AAAI/MIT Press,1996:307-328.
  • 4Agrawal R,Skikant R.Fast algorithms for mining association rules in large databases[C]//Proceeding of the 20th International Conference on Very Large Databases,Santiago,Chile,1994:487-489.
  • 5Chess Database.http://fimi.cs.helsinki.fi/data.
  • 6杨红菊,梁吉业.一种挖掘频繁项集和频繁闭包项集的算法[J].计算机工程与应用,2004,40(13):176-178. 被引量:5

共引文献13

同被引文献16

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部