期刊文献+

资源受限核聚类人工免疫网络的研究与实现

Research and Implementation of Resource Limited Kernel Clustering Artificial Immune Network
下载PDF
导出
摘要 聚类分析的两个基本任务是分析数据集中簇的数量以及这些簇的位置。在深入研究了核聚类方法及人工免疫网络的特性的基础上,引入资源受限机制,并讨论该机制在无监督自动聚类中的应用。实验结果表明,该机制能有效地提高聚类的收敛速度和分类效果。 The tasks of cluster analysis are to find out the number of clusters and their positions. Introduces the Resource-Limited mechanism based on data cluster and artificial Immune system. Discusses the application of this unsupervised cluster analysis. The results show that the effective mechanism can improve the convergence rate of clustering and classification results.
作者 王玉峰 葛红
出处 《现代计算机》 2009年第2期45-46,55,共3页 Modern Computer
关键词 核聚类 人工免疫系统 资源受限 Kernel Clustering Artificial Immune System Resource-Limited
  • 相关文献

参考文献4

二级参考文献15

  • 1钟将,吴中福,吴开贵,欧灵.基于人工免疫网络的动态聚类算法[J].电子学报,2004,32(8):1268-1272. 被引量:24
  • 2蔡自兴,龚涛.免疫算法研究的进展[J].控制与决策,2004,19(8):841-846. 被引量:56
  • 3DudaRO HartPE DavidG. Stork著 李宏东 姚天翔等译.模式分类[M].北京:机械工业出版社,2003..
  • 4De Castro,Fernando J.An Evolutionary Immune Network for Data Clustering[C].In:Proc of the IEEE SBRN,2000:84~89
  • 5De Castro,Fernando J.aiNet:An Artificial Immune Network for Data Analysis[M].Idea Group Publishing,2001:9~13
  • 6Jerne N K.Towards A Network Theory of the Immune Systems.Annual Immunology(Inst,Pasteur)125-c,373~388
  • 7Jiawei Han,Micheline Kamber.Data Mining:Concepts and Techniques[M].Mongan Kaufmann Publishers,2000:225~278
  • 8R Ng,J Han.Efficient and effective clustering method for spatial data mining[C].In:Proc 1994 Int Conf Very Large Data Bases,1994-09
  • 9Hunt J,Timmis J,Cooke D,et al.Jisys:The Development of an Artificial Immune System for Real World Applications[A].Dasgupta D ed.Artificial Immune Systems and Their Applications[M].Springer-Verlag,1998.157-186.
  • 10Timmis J.Artificial Immune Systems:A Novel Data Analysis Technique Inspired by The Immune Network Theory:[Ph D Thesis][D].Aberystwyth:Department of Computer Science,University of Wales,2000.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部