摘要
本文在SDBDF方法的基础上构造了一类k步k+1阶的SDBDF型混杂法,讨论了该方法的稳定性质,证明了k=1,2,3时,方法是A稳定的,k=4~10时方法是stif稳定的,同BDF型和Adams型混杂法相比,该方法的stif稳定阶大有提高,这两类方法的stif稳定阶只能分别达到8阶和9阶〔2,3,5〕.在实现Newton迭代计算时,我们的方法要优于原SDBDF方法,因此对于求解stif问题,我们的这类方法具有一定的优势。
In this paper a class of kstep, (k+1)st order hybrid methods of SDBDF is constructed and its stability properties are discussed. The methods are proved to be Astable for k=1,2,3 and stiffly stable for k=4,…,10. The stiffly stable orders of our methods are much higher than that of BDF and Adams hybrid methods of which the stiffly stable orders are up to 8 and 9 respectively. In implementation by Newton iteration, our methods are more efficient than SDBDF method for solving nonlinear stiff problems. Finally Some numerical results are presented.
出处
《数学杂志》
CSCD
1998年第1期107-112,共6页
Journal of Mathematics
基金
国家自然科学基金