摘要
本文对Brauer第24问题[1]作了推广.利用Dade关于循环块的理论得到如下结果:设G是有限群,P是G的循环Sylowp子群.设|P|=pa,a为正整数.令Pi为P中唯一的pi阶子群,1ia.则|Cl(G)|=|Cl(NG(Pi))|的充分必要条件为PiG.
In this note we use the theory of blocks with cyclic defect groups to extend the study on Brauer’s problem 24(see ). We prove the following theorem: Let G be a finite group with a cyclic Sylow p-subgroup P. Assume |P|=p a, where a is a positive integer. Let P i be the unique subgroup of order p i of P,1ia. Then |Cl(G)|=|Cl(N G(P i)| if and only if P iG.
出处
《数学进展》
CSCD
北大核心
1998年第1期78-80,共3页
Advances in Mathematics(China)
基金
国家自然科学基金