摘要
本文讨论了B值随机元非随机足标与随机足标和尾概率的收敛速度.借助于B值独立随机元序列满足强大数定律与弱大数定律等价的这一特性,得到了Banach空间p型性质的刻划,同时将[1,2]中实值独立同分布随机变量和完全收敛性的相应结果推广到B值独立但不必同分布情形.其中,0<t<1时,去掉了对随机无独立性的要求.
We discuss in this paper convergence rates of tail probabilties for partial sumsand randomly indexed partial sums of B-valued random elements. By the equivalent property of strong and weak law of large numbers of B-valued independent random elements,we obtain the characterization of p--type Banach space in teams of the convergence rates forsums of zero mean B--valued independent random elements. The corresponding results in[1,2] on i.i.d. real random variables are extended to the case of B-valued independent but notnecessary identically distributed random elements, and when 0 < t < 1, the independenceon random elements is eliminated.
出处
《应用数学学报》
CSCD
北大核心
1998年第1期92-102,共11页
Acta Mathematicae Applicatae Sinica
基金
国家自然科学基金
河南省教委基金