期刊文献+

Mn_(0.2)Zn_(0.8)Fe_(2-x)Ce_xO_4铁氧体纤维的制备、结构及其磁性能 被引量:1

Preparation,structure and magnetic properties of Mn_(0.2)Zn_(0.8)Fe_(2-x)Ce_xO_4 ferrite fibers
下载PDF
导出
摘要 以柠檬酸和金属盐为原料,采用有机凝胶一热分解法成功制备了Mn0.2Zn0.8Fe2-xrCexO4(x=0~0.04)系列铁氧体纤维。通过XRD、SEM和VSM等技术对产物进行了表征,研究了Ce抖掺杂对Mn—Zn铁氧体纤维的结构,微观形貌及磁性能的影响。结果表明,所制得的纤维轴向较为均匀,长径比较大,直径在0.5~3.5μm之间,组成纤维的晶粒平均尺寸为11.6~12.8nm。Ce^3+掺杂没有引起Mn0.2Zn0.8Fe2-xrCexO4纤维结构的明显变化,仍为单一的立方尖晶石结构,但晶格常数和晶粒粒径随Ce^3+掺入量的增加而略微增大。Ce抖掺杂使Mn-Zn铁氧体纤维的饱和磁化强度增大,矫顽力下降,软磁性能有所提高。 A serials of Mn0.2 Zn0.8 Fe2-xCe, O4 (x=0, 0.01, 0.02, 0.03, 0. 04) ferrite fibers were successfully prepared by the organic gel-thermal decomposition method using metal salts and citric acid as raw materials. The obtained ferrite fibers were characterized by X-ray diffraction (XRD), scan electro microscopy (SEM) and vibrating sample magnetometer (VSM). The effects of Ce3+ doping on the structure, morphologies and magnetic properties of the Mn-Zn ferrite fibers were investigated. The results show that the Mn0.2Zn0.8Fe2-xCexO4 fibers composed of nanosized crystalline grains are featured with fine diameters between 0.5-3.5μm and high aspect ratios(length/diameter), and the average crystal size ranges from 11.6-12.8nm. The Ce^3+ doping has not resulted in crystal structural changes of the Mn-Zn ferrite and all the ferrite fibers as-prepared have a simple cubic spinel phase structure, but both the lattice constant and grain size increase slightly with increasing Ce^3+ content. The substitution of Ce for Fe can lead to an increase in saturated magnetization and a decrease in coercivity, and improve the soft magnetic properties of Mn-Zn ferrite fibers to a certain extent.
出处 《功能材料》 EI CAS CSCD 北大核心 2009年第3期365-368,共4页 Journal of Functional Materials
基金 国家自然科学基金资助项目(50674048) 航空科学基金资助项目(2007ZF52062)
关键词 Mn-Zn铁氧体纤维 CE掺杂 有机凝胶-热分解法 磁性能 Mn-Zn ferrite fibers Ce^3+ doping the organic gel-thermal decomposition method magnetic properties
  • 相关文献

参考文献19

  • 1Stoppel D. [J]. J Magn Magn Mater, 1996, 160:323- 324.
  • 2Arulrmurugan R, Jeyadevanb B, Vaidyanathana G, et al. [J].J Magn Magn Mater, 2005, 288: 470-477.
  • 3Shokrollahi H, Janghorban K. [J]. Mater Sci Eng B, 2007, 141: 91-107.
  • 4Ahmed M A, Okasha N, E1-Sayed M M.[J].Ceram Int, 2007, 33:49-58.
  • 5冯则坤,李海华,何华辉.Co^(2+)或Sn^(4+)对MnZn功率铁氧体磁特性的影响研究[J].功能材料,2003,34(6):649-651. 被引量:10
  • 6Pullar R C, Taylor S M D, Bhattacharya A K. [J]. J Euro Ceram Soc, 2002, 22: 2039-2045.
  • 7Pullar R C,Bhattacharya A K. [J]. J Magn Magn Mater, 2006, 300: 490-499.
  • 8Li D, Herricks T, Xia Y N. [J]. Appl Phys Lett, 2003, 83:4586- 4588.
  • 9Zhan S H,Gong C R,Chen D R, et al. [J].J Disper Sci Teehnol, 2006, 27:931-933.
  • 10Ju Y W, Park.J H, Jung H R, et al. [J]. Mater Sei Eng B,in press.

二级参考文献37

共引文献36

同被引文献8

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部