期刊文献+

nc-Si/SiO_2球形量子点的三阶极化率

Third-order Nonlinear Susceptibility in a nc-Si/SiO_2 Spherical Quantum Dot
下载PDF
导出
摘要 在有效质量近似下,采用无限深势阱,理论计算nc-Si/SiO2球形量子点导带中的电子束缚态,并利用紧束缚密度矩阵理论,推导出共振三阶极化率的表达式.通过数值模拟,分析讨论nc-Si/SiO2球形量子点的三阶极化率与量子点半径、入射光子的能量和弛豫相的关系.结果表明,在强受限中,三阶极化率与量子点半径、入射光子能量和弛豫相有着显著的关系.随着量子点半径的增大、入射光子能量的增大和弛豫相的减小,三阶极化率都有不同程度的增强. Under the effective mass approximation, the electron state is considered to be confined within a nc-Si/SiO2spherical quantum dot with infinite barrier, and by using the compact density matrix method, the analytic expression for the resonant third-order susceptibilities was derived. According to numerical simulation, the relation of the third-order susceptibilities with quantum dot dimension, incident photo energy and various relaxation rate was discussed. The result shows that the third-order susceptibilities strongly depends on quantum dot dimensions, incident photon energy and various relaxation rate. The third-order susceptibilities increases with an increase in quantum dot dimension and incident photo energy and a decrease in various relaxation rate.
出处 《华侨大学学报(自然科学版)》 CAS 北大核心 2009年第2期143-146,共4页 Journal of Huaqiao University(Natural Science)
基金 福建省自然科学基金资助项目(E0410018) 国务院侨办科研基金资助项目(06QZR02) 泉州市科技计划重点项目(2008G7)
关键词 量子点 无限深势阱 三阶极化率 nc-Si/SiO2 quantum dot infinite barrier third-order susceptibilities nc-Si/SiO2
  • 相关文献

参考文献4

二级参考文献20

  • 1胡水龙,徐旭明,于天宝.光量子阱单滤波、多通道开关[J].光子学报,2004,33(8):1004-1006. 被引量:28
  • 2[1]Yablonovitch E.Inhibited spontaneous emission in solid-state physics and electronics.Phys Rev Lett,1987,58(20): 2059~2062
  • 3[2]John S. Strong localization of photons in certain disordered dielectric superlattices.Phys Rev Lett,1987,58(23): 22486~2489
  • 4[3]Qiao F,Zhang C,Wang J,et al. Photonic quantum-well structures:Multiple channeled filtering phenomena.Appl Phys Lett, 2000,77(23):3698~3702
  • 5[4]Lan S,Nishikawa S,Wada O. Leveraging deep photonic band gaps in photonic crystal impurity bands.Appl Phys Lett,2001,78(15):2101~2103
  • 6[5]Zhu S Y,Liu N H,Chen H,et al.Time delay of light propagaton defect modes of one-dimensional photonic band-gap structures.Opt Commun,2000,174(2):139~143
  • 7[6]Joannopoulos J D,Meade R D,Winn J N.Photonic crystals, Princeton University Press,Princeton,NJ,1995:19~32
  • 8[8]Yablonovitch E,Gmitter T G. Donor and acceptor modes in photonic band structure.Phys Rev Lett, 1991,67(24):3380~3383
  • 9[9]Liu N H. Defect modes of stratified dielectric media.Phys Rev(B),1997,55(7):4097~4100
  • 10[11]Lan S,Nishikawa S,Sugimoto Y.Phys Rev(B), 2002,65(16):165208-1~09

共引文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部