期刊文献+

用三角形单元建立拓扑优化类桁架连续体 被引量:1

Topology Optimization of Truss-Like Continuum Structures by Triangle Elements
下载PDF
导出
摘要 为克服用矩形单元划分不规则区域的困难,使得结点和单元的分布可控性好,采用三角形常应变单元建立拓扑优化的类桁架连续体.以杆件在结点位置的方向和密度作为设计变量,采用优化准则法进行优化.在迭代过程中,将杆件的方向调整到主应力方向,根据主应力方向的应变调整杆件的密度.通过对单元进行局部加密,能够明显改善杆件汇交点处的拓扑优化结果.算例表明,方法是合理的、有效的. To overcome the difficulty in dividing irregular design domain by rectangular elements and to distribute the nodes and elements reasonably, the topology optimal truss-like continuum structures are established by triangle elements with constant strain. The densities and orientations of members at nodes are taken as design variables, which is optimized by optimality criteria method. During the iteration, the member orientations are aligned along the principal stress directions. The member densities are adjusted according to the magnitudes of strains along the principal stress. By local mesh refinement, the structures at members" intersection become explicit. The rationality and efficiency of the presented method is demonstrated by examples.
作者 闫凯 周克民
出处 《华侨大学学报(自然科学版)》 CAS 北大核心 2009年第2期200-203,共4页 Journal of Huaqiao University(Natural Science)
基金 国家自然科学基金资助项目(10872072) 教育部科学技术研究重点项目(208169) 福建省自然科学基金资助项目(E0640010)
关键词 拓扑优化 类桁架 应力约束 三角形单元 topology optimization truss-like continuum stress constraints triangle element
  • 相关文献

参考文献12

二级参考文献47

  • 1隋允康,彭细荣.结构拓扑优化ICM方法的改善[J].力学学报,2005,37(2):190-198. 被引量:79
  • 2程耿东,张东旭.受应力约束的平面弹性体的拓扑优化[J].大连理工大学学报,1995,35(1):1-9. 被引量:86
  • 3王跃方,孙焕纯.离散变量桁架结构的布局优化设计[J].大连理工大学学报,1995,35(4):458-462. 被引量:31
  • 4郭旭.结构拓扑优化中奇异最优解的研究[M].大连:大连理工大学,1997..
  • 5蒋铮.结构拓扑优化研究及天线结构设计软件开发[M].大连:大连理工大学,1993..
  • 6ROZVANY G I N, BENDSΦE M P. KIRSCH U. Layout optimization of structures [J]. Applied Mechanics Reviews. 1995. 18(2): 41-119.
  • 7ESCHENAUER H A, OLHOFF N. Topology optimization of continuum structures: A review[J]. Applied Mechanics Reviews, 2001, 54(4):331-389.
  • 8BENDSΦE M P, KIKUCHI N. Generating optimal topologies in structural design using a homogenization method [J]. Comput Meth Appl Mech Engng, 1988, 71: 197-224.
  • 9XIE Y M, STEVEN G P. A simple evolutionary procedure for structures optimization[J]. Comput Struet, 1993, 49 : 885-896
  • 10OSHER S, FEDKIW R. Level set methods and dynamic implicit surfaces[M]. New York: Springer,g003.

共引文献175

同被引文献13

  • 1隋允康,叶红玲,彭细荣.应力约束全局化策略下的连续体结构拓扑优化[J].力学学报,2006,38(3):364-370. 被引量:18
  • 2隋允康,彭细荣,叶红玲.应力约束全局化处理的连续体结构ICM拓扑优化方法[J].工程力学,2006,23(7):1-7. 被引量:17
  • 3MICHELL A G M. The limits of economy of material in framestucture[J]. Philosophical Magazine, 1904,8(6) :589- 597.
  • 4COX H L. The design of structures of least weight[M]. Oxford: Pergamon, 1965.
  • 5HEGEMINER G A,PRAGER W. On Michell trusses[J]. International Journal of Mechanical Sciences, 1969,11 (2): 209-215.
  • 6ROZVANY G I N. Some shortcomings in Michell trusses theory[J]. Stuctural Optimization, 1996,12 (4): 244-250.
  • 7ROZVANY G I N. Partial relaxation of the orthogonality requirement for classical Michell trusses[J]. Stuctural Optimization, 1997,13 (4): 271-274.
  • 8BENDOE M P, DIAZ A R, LIPTON R, et al. Optimal design of material properties and material distribution for multiple loading conditions[J]. International Journal for Numerical Methods in Engineering, 1995,38(7):1149-1170.
  • 9GUAN H S, GRANT P, XIE Y M. Evolutionary structural optimization incorporation tension and compression materials[J]. Advances in Structural Engineering, 1999,2(4) : 273-288.
  • 10ZHOU Ke-min, LI Xia. Topology optimization of structures under multiple load cases using fiber-reinforced composite material model[J]. Computational Mechanics,2006,38(2):163-170.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部