摘要
高中数学人教版第八章《圆锥曲线方程》复习参考题中有这样一道题:设M(x0,y0)是椭圆x^2/a^2+y^2/b^2=1(n〉6〉0)上一点,r1和r2分别是点M与点F1(-c,0)、F2(c,0)的距离.求证:r1=a+ex0,r2=a-ex0.此题的解答过程便是推导椭圆焦半径的过程.圆锥曲线的焦半径是指圆锥曲线上的任意一点到其焦点的距离.许多圆锥曲线的求解问题,往往都牵涉到它,特别是在涉及到焦半径或焦点弦的一些问题时,用焦半径公式解题可以简化运算过程,给解题带来生机.因此,掌握它是非常重要的.
出处
《中学教学参考》
2009年第2期59-59,共1页
Reference for Middle School Teaching