摘要
研究了基于评价对象整体排名构建高技术产业竞争实力评价模型的方法。首先提出了一种综合专家排名信息的高效优化算法;接着利用模型输出的排名和专家综合排名构建优化的目标函数;然后使用遗传算法对此目标函数进行优化,确定模型参数;最后利用10个省市制药行业规模以上企业数据演示了该方法的应用与优点。
In this paper, the methods of constructing models for assessing competition ability of hi - tech industries based on the integrated preference order of the objects assessed are studied. Firstly, a highly efficient algorithm for fusing the preference information of experts in this domain is presented. Secondly, the objective function of optimization is established by making use of both the outputs of the model and the integrated preference order given by experts. Then, the parameters of the model are obtained by optimizing the objective function via genetic algorithms. Lastly, both its application and advantages are illustrated by utilizing the data of the scale enterprises in the pharmaceutical industry of ten provinces in P.R. China.
出处
《软科学》
CSSCI
北大核心
2009年第3期10-14,共5页
Soft Science
基金
国家自然科学基金资助项目(70671025)
关键词
高技术产业
评价模型
优化算法
hi - tech industries
assessing model
optimization algorithm