期刊文献+

随机利率下责任准备金的最优投资

Study of the best investment of reserve under random interest rates
下载PDF
导出
摘要 当保险精算利率与实际利率相等时,整个保险期间收支是平衡的,基金收益应为0;文章通过对利息力累积函数采用wiener过程建模,给出责任准备金的优化投资模型,使得保险基金在原本无收益的情况下,通过优化分段投资产生最大的期望收益并分析投资的稳定性,最后用实例模拟,取得了较好的效果。 Earnings of reserve funds should be zero When the actuarial rate of interest is equal to the real rate of interest. In this paper, the optimal investment model of reserve deposits under random rates of interest is modeled by the Wiener process. The model can make reserve funds which might have no economic profits bring maximum eXpected profits by the optimal reserve deposits. A simulation example is presented and a satisfactory result is obtained.
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第3期388-391,共4页 Journal of Hefei University of Technology:Natural Science
基金 山东科技大学科学研究“春蕾计划”资助项目(2008BWZ025,2008BZC019)
关键词 线性规划 收益率 责任准备金 随机利率 linear programming rate of return reserve random rate of interest
  • 引文网络
  • 相关文献

参考文献11

  • 1迈克·弗里曼.中国保险监管与精算务实[M].北京:中国人民大学出版社,2003:36-48.
  • 2田存福,刘芳,吴黎军.责任准备金的最优投资计划[J].系统工程理论与实践,2005,25(6):76-86. 被引量:2
  • 3Beekman J A, Fuelling C P. Extra randomness in certain annuity models[J]. Insurance: Mathematics and Economics, 1991,10:275--287.
  • 4De Sehepper A, De Vylder F, Goovaerts M, et al. Interest randomness in annuities certain[J]. Insurance:Mathematics and Economies, 1992,11: 271-- 281.
  • 5De Schepper A, Goovaerts M. Some further results on annuities certain with random interest[J]. Insurance: Mathematics and Economics, 1992,11: 283-- 299.
  • 6De Schepper A, Goovaerts M, Delbaen F. The Laplace transform of annuities certain with exponential time distribution[J]. Insurance: Mathematics and Economics, 1992, 11:291--294.
  • 7Vanneste M, Goovaerts M J, De Schepper A, et al. A straight forward analytical calculation of the distribution of an annuity certain with stochastic interest rate[J]. Insurance: Mathematics and Economics, 1997,20 : 35--41.
  • 8何文炯,蒋庆荣.随机利率下的增额寿险[J].高校应用数学学报(A辑),1998,13(2):145-152. 被引量:36
  • 9刘凌云,汪荣明.一类随机利率下的增额寿险模型[J].应用概率统计,2001,17(3):283-290. 被引量:43
  • 10Perry D, Stadje W. Function Space integration for annuities [J]. Insurance: Mathematics and Economics, 2001, 29: 73--82.

二级参考文献7

  • 1何文炯,蒋庆荣.随机利率下的增额寿险[J].高校应用数学学报(A辑),1998,13(2):145-152. 被引量:36
  • 2GERBER H U. Life Insurance Mathematics: 3 ed [M]. London: Springer-Verlag, 1997.
  • 3迈克.弗里曼.通货紧缩市场下的偿付能力管理[A]..中国保险监管与精算务实[M].北京:中国人民大学出版社,2003.36-48.
  • 4基金计划2001B[J].数学的实践与认识,2002,(1).
  • 5NL鲍尔斯 余跃年 郑韫瑜 译.精算数学[M].上海:上海科学出版社,1998..
  • 6SG凯利森著 尚汉冀 译.利息理论[M].上海:上海科学出版社,1998..
  • 7吴黎军.人寿保险中的最优缴费模型[J].数学的实践与认识,2003,33(11):6-8. 被引量:3

共引文献60

;
使用帮助 返回顶部