期刊文献+

一类二阶阻尼时滞偏微分方程解的振动性 被引量:1

Oscillation of solutions to a class of second order damped time-delay partial differential equations
下载PDF
导出
摘要 文章研究一类二阶阻尼时滞偏微分方程解的振动性,利用二阶阻尼微分不等式获得该类方程在两类边值条件下振动的若干充分判据。 Oscillatory properties of solutions to a class of second order damped time-delay partial differential equations are studied. Some criteria of sufficient conditions for the oscillation of all solutions of the equations are obtained under two kinds of boundary conditions by using second order damped differential inequalities.
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第3期440-441,445,共3页 Journal of Hefei University of Technology:Natural Science
基金 湖南省教育厅科研基金资助项目(06C189)
关键词 阻尼 时滞 偏微分方程 振动性 damping time-delay partial differential equation oscillation
  • 相关文献

参考文献8

  • 1Hsu H B, Yeh C C. Ocillation theorems for second order half-linear differential equations[J]. Appl Math Lett, 1996, 9(6):71--77.
  • 2Li H J, Yeh C C. An integral creterion for oscillation of nonlinear differential equations[J]. Math Japonica, 1995,41 (1) : 185--188.
  • 3Li H J. Ocillation criteria for second order linear differential equations[J]. Math Anal and Appl, 1995,194: 217-- 234.
  • 4Manojlovic J V. Ocillation criteria for second order half-linear differerttial equations [J]. Math Comput MedoUing, 1999,30:109--119
  • 5张全信,燕居让.一类二阶非线性阻尼微分方程的振动性[J].系统科学与数学,2004,24(3):296-302. 被引量:35
  • 6Rogovchenko Y V, On oscillation of a second order nonlinear delay differential equation[J]. Funkcial Ekvac, 2000, 43:1--29.
  • 7王培光,傅希林,俞元洪.一类时滞双曲方程的振动准则[J].Journal of Mathematical Research and Exposition,1998,18(1):105-111. 被引量:33
  • 8罗李平,欧阳自根.一类具连续分布滞量的二阶非线性偏微分方程的振动准则[J].科技通报,2007,23(1):11-14. 被引量:6

二级参考文献16

  • 1燕居让,张全信.二阶非线性阻尼常微分方程的振动性定理[J].系统科学与数学,1993,13(3):276-278. 被引量:16
  • 2崔宝同,俞元洪,林诗仲.具有时滞的双曲型微分方程解的振动性[J].应用数学学报,1996,19(1):80-88. 被引量:76
  • 3傅希林,一类偏泛函微分方程的强迫振动、非线性振动、分叉及浑沌论文集,1992年
  • 4俞元洪,Radovi Mathmaticki,1991年,7卷,167页
  • 5Rogovchenko Yu V. On oscillation of a second order nonlinear delay differential equation. Funkcial.Ekvac. 2000, 43: 1-29.
  • 6Jurang Yan. Oscillation theorems for second order linear differential equations with damping.Proc. Amer. math. Soc., 1986, 98: 276-282.
  • 7Cecchi M and Marini M. Oscillatory and nonoscillatory behavior of a second order functional differential equation. Rocky Mount. J. Math., 1992, 22: 1259-1276.
  • 8Ladde G S, Lakshmikantham V, and Zhang B G. Oscillation Theory of Differential Equations with Deviating Arguments. Marcel Dekker, New York, 1987.
  • 9Lalli B S,Yu Y H and Cui B T.Oscillation of hyperbolic equations with functional argumenrs[J].Appl.Math.Comput.,1993,53:97-110.
  • 10Chen W D and Yu Y H.Oscillation criteria of solutions for a class of boundary value problems[J].J.Math.Res.Exp.,1995,15(1):29-34.

共引文献65

同被引文献6

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部