期刊文献+

基于在线支持向量机的非线性内模控制 被引量:2

Nonlinear internal model control based on online support vector machine
下载PDF
导出
摘要 为了提高传统内模控制的鲁棒性和抗干扰能力,采用在线支持向量机回归(Online Support Vector Machine Regression,OSVMR)理论建立系统的正向模型和设计逆模控制器。首先简要介绍了OSVMR的原理和算法,然后将其应用于内模控制问题,并建立了OSVMR模型。其次,在控制过程可逆的条件下设计了OSVMR控制器,最后将该控制方法应用于可逆非线性系统和具未知干扰的温室环境控制问题,仿真结果表明该方法与RBF神经网络IMC相比,具有较简单的模型和较好的控制性能。 To improve the robustness and anti-interference of traditional inverse control,the system process is modeled and an inverse model controller using support vector machine regression(OSVMR) is designed.First,the OSVMR principle is briefly intro- duced.Second,the OSVMR is applied to the internal model control (IMC) problem,and the OSVMR internal model is developed. Third,an OSVMR controller for internal model control problem is proposed under the inverse condition of control process.Finally, the control algorithm is applied to the reversible nonlinear system and greenhouse environment with unknown disturbance,and compared with neural networks IMC using simulation,and the results show that the OSVMR IMC has a simplified model and good control performance.
作者 陈进东 潘丰
出处 《计算机工程与应用》 CSCD 北大核心 2009年第9期18-20,共3页 Computer Engineering and Applications
基金 国家高技术研究发展计划(863)No.2006AA020301~~
关键词 支持向量机 在线支持向量机回归 内模控制 非线性系统 support vector machine online support vector machine regression internal model control nonlinear system
  • 相关文献

参考文献10

  • 1Hu Q,Saha P,Rangaiah G P.Experimental evaluation of an augmented IMC for nonlinear systems[J].Control Engineering Practice, 2000,8 (10): 1167-1176.
  • 2Hu Q,Rangaiah G P.Adaptive internal model control of nonlinear process[J].Chemical Engineering Science, 1999,54(9) : 1205-1220.
  • 3张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2272
  • 4王定成,方廷健.一种基于支持向量机的内模控制方法[J].控制理论与应用,2004,21(1):85-88. 被引量:12
  • 5何峻峰,张曾科.基于支持向量机的逆系统离散控制方法[J].清华大学学报(自然科学版),2005,45(1):100-102. 被引量:10
  • 6Wang Hui,Pi Daoying,Sun Youxian.Online SVM regression algorithm -based adaptive inverse control [J].Nerocomputing, 2007,70: 952-959.
  • 7Vapnik V.The nature of statistical learning theory[M].NewYork: Springer, 1999.
  • 8Ma Junshui,Theiler J,Perkins S.Accurate on-line support vector regression[J].Neural Computation, 2003,15 ( 11 ) : 2683-2704.
  • 9Hunt K J,Sbarbaro D.Neural networks for nonlinear internal model control[J].IEE Proc_D, 1991,138(5) :431-438.
  • 10Mbert S,Louis D A,Richard M P.Application of pseudo-derivative feedback algorithm in greenhouse air temperature control[J].Computer and Electronics in Agriculture, 2000,26 (3) : 283-302.

二级参考文献15

  • 1[1]HU Q, SAHA P, RANGAIAH G P. Experimental evaluation of an augmented IMC for non-linear sytems [J]. Control Engineering Practice, 2000,8(10):1167-1176.
  • 2[2]HU Q, RANGAIAH G P. Adaptive internal model control of non-linear process [J]. Chemical Engineering Science, 1999,54(9): 1205-1220.
  • 3[3]MLLER K R, SMOLA A J, RTSCH G, et al. Predicting time series with support vector machines [C]∥GERSTNER W, GERMOND A, HASLER M, et al. Proc of Int Conf on Artificial Neural Networks'97, Springer Lecture Notes in Computer Science. New York::Springer, 1997:999-1004.
  • 4[4]VAPNIK V. The Nature of Statistical Learning Theory [M]. New York: Springer, 1999.
  • 5[5]BOSER B E, GUYON I M, VAPNIK V N. A training algorithm for optimal margin classifiers [C]∥HAUSSLER D. Proc of the 5th Annual Association for Computing Machinery Workshop on Computional Learning Theory. Pittsburgh, PA:ACM Press,1992:144-152.
  • 6[6]OSUNA E, FREUND R, GIROSI F. An improved training algorithm for support vector machines [C]∥Proc of IEEE Neural Networks for Signal Processing. Los Alamitons, CA: IEEE Press,1997:276-285.
  • 7[7]HUNT K J, SBARBARO D. Neural networks for non-linear internal model control [J]. IEE Proc-D, 1991,138(5):431-438.
  • 8[8]ALBERT S, LOUIS D A, RICHARD M P. Application of pseudoderivative-feedback algorithm in greenhouse air temperature control [J]. Computer and Electronics in Agriculture, 2000, 26(3):283-302.
  • 9李春文 冯元琨.非线性多变量系统的逆系统方法[M].北京:清华大学出版社,1991..
  • 10Van Gestel T, Suykens J A K, Baestaens D E, et al.Financial time series prediction using least squares support vector machines within the evidence framework [J]. IEEE Transactions on Neural Networks, 2001, 12:809 - 821.

共引文献2287

同被引文献28

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部