期刊文献+

网格划分在分子影像学中的应用

Mesh Generation on Optical Molecular Imaging
下载PDF
导出
摘要 有限元是光学分子影像学分析的一个重要方法,网格划分是有限元方法的一个重要步骤,其中Delaunay划分是是众多网格划分方法中应用较为广泛的一种。本文主要介绍Delaunay、受限Delaunay网格划分特点以及逐点插入法和分治法两种划分算法。程序主要采用划分速度较快的分治法,并通过加入边界和改造不合格三角形来优化网格。 The finite element method is a popular method in optical molecular imaging. Mesh Generation is a process of splitting a physical domain into smaller sub-domains. And it is also an important procedure in finite element method. Delaunay triangulation is a characteristics method in variety of mesh triangulation methods. This paper introduces the characteristics of Delaunay and constructing Delaunay triangulations, and also mentions two constructing algorithms of incremental insertion algorithm and divide-and- conquer algorithm. The divide-and-conquer algorithm is used for constructing the mesh because of its fast speed. The methods of inserting boundaries and refining the mesh are also included for optimizing the meshes in this paper.
作者 杨恒 张继武
出处 《北京生物医学工程》 2009年第1期43-47,共5页 Beijing Biomedical Engineering
关键词 网格划分 DELAUNAY 网格优化 mesh triangulatio delaunay mesh refinement
  • 相关文献

参考文献7

  • 1Shewchuk JR. Delaunay refinement mesh generation. PhD- Thesis. Pittsburg:Carnegie Mellon University, 1997.
  • 2Guibas L, Stolfi J. Primitives for manipulation of general subdivisions and the computation of voronoi diagram. ACM Transations on Graphics, 1985,4(2) : 75 -123.
  • 3Ruppert Jim. A delaunay refinement algorithm for quality 2- dimensional mesh generation [ J ]. Journal of Algorithms , 1995, 18(3) :548 -585.
  • 4Shewchuk JR. Triangle: engineering a 2D quality mesh generator and Delaunay triangulator in Proceedings of the 1st ACM Workshopon Applied Computational Geometry ( WACG '96 ), Philadelphia, Pa, USA: 1996:124- 133.
  • 5Lee DS, Schachter BJ. Two algorithms for constructing a Delaunaytriangulation International Journal of Parallel Programming , 1980,9 ( 3 ) : 219 - 242.
  • 6崔建,江雄心,游步东.二维有限元网格生成方法[J].南昌大学学报(工科版),2003,25(2):92-96. 被引量:2
  • 7严登俊,黄学良,胡敏强,勾磊.有限元网格生成技术分析[J].微特电机,1999,27(1):34-37. 被引量:11

二级参考文献14

  • 1张炳军 周克定.任意平面三角形自动剖分新方法[J].大电机技术,1988,(4):25-32.
  • 2刘汉炎.有限元程序的前处理程序[J].哈尔滨电工学院学报,1987,10(3).
  • 3Wordenweber B. Finite Element Mesh Generation[ J ]. Comput. - Aided Des, 1984,16 (9) : 285 - 291.
  • 4BYkat A. Automatic Generation of Trianguiar Grid: I - subdivision of a General Polygon into Convex- snbregions. II - trian-gulation of Convex Polygons[J]. Int J Numer Meth Eng,1976,10:1 329 - 1 342.
  • 5Johnston R P, John M, Sullivan J R. Fully Automatic Two Dimensional Mesh Generation Using Normal Offsetting[ J ]. Int J Numer Meth Eng,1992,33:425 - 442.
  • 6Blacker T D. Paving:A New Approach to Automated Quadrilateral Mesh Generation[J ]. Int J Numer Meth Eng, 1991,32:811- 847.
  • 7Heighway E A. A Mesh Generator for Automatically Subdividing Irregular Polygons into Quadrilaterals[J]. IEEE Trans on Mag1983,MAG-19(6) :2 535-2 538.
  • 8Kadiver M H. Sharifi H. Double Mapping of Isopermetric Mesh Generation[J]. C&S, 1996,59(3) :471 - 477.
  • 9Buell W R and Bush B A. Mesh Generation - a Survey[J]. Trans ASME J Eng Int, 1973, (2) :332 - 338.
  • 10Thacker W C. A Brief Review of Techiques for Generating Irregular Computational Grids[J]. Int J Numer Meth Eng, 1980,15 :1 335-1 341.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部