期刊文献+

基于Matlab的SCM822H齿轮钢性能预测 被引量:1

PROPERTY PREDICTIONS OF SCM822H GEAR STEEL BASED ON NEURAL NETWORK TOOLBOX IN MATLAB
下载PDF
导出
摘要 采用Matlab的人工神经网络工具箱建立BP人工神经元网络,预测SCM822H齿轮钢的性能。选择10×12×3网络结构及基于Levenberg-Marquardt优化算法和改进的误差函数的训练函数trainbr,BP网络对SCM822H齿轮钢的性能进行快速训练的同时,使网络的泛性得到提高。最后对网络性能进行回归分析,证明了网络设计的合理性。使用训练好的网络对SCM822H齿轮钢力学性能及淬透性进行预测,预测结果表明,网络具有较高的预测精度,可在实际生产和科学研究中进行应用。 A feed-forward back propagation (BP) artificial neural network (ANN) is introduced for the prediction of properties of SCM822H gear steel based on the artificial neural network toolbox in MATLAB. With proper selection of neural network architecture of 10 × 10 × 3 and training function trainbr based on Levenberg-Marquardt optimization algorithm and improved error function, the BP network performs fast training on the properties of SCM822H gear steel with the raise of network generalization ability at the same time. Regressive analysis is made on network performance, and the analysis result demonstrates the rationality of this network design. The trained network is used to predict the mechanical properties and penetration hardenabilities of SCM822H gear steel. The results show that the ANN used can predict the properties with low error, and it can be applied in scientific research and practical production.
出处 《计算机应用与软件》 CSCD 2009年第3期199-201,共3页 Computer Applications and Software
关键词 MATLAB BP人工神经元网络 SCM822H齿轮钢 性能预测 Matlab BP artificial neural network SCM822H gear steel Predictions of properties
  • 相关文献

参考文献9

  • 1Bahrami A, Mousavi Anijdan S H, Madaah Hosseini H R,et al. Effective parameters modeling in compression of an austenitic stainless steel using articial neural network [ J ]. Computational Materials Science, 2005,34:335 - 341.
  • 2Jun Zhao, Fengquin Wang. Parameter identification by neural network for intelligent deep drawing of axisymmetric workpieces [ J ]. Journal of Materials Processing technology, 2005,166 : 387 - 391.
  • 3Thirumalai Parthiban, Ravi R, Parthiban G T, et al. Neural network analysis for corrosion of steel in concrete [ J ]. Corrosion Science, 2005,47 : 1625 - 1642.
  • 4Mojtaba Shamsipur, Bahram Hemmateenejad, Morteraz Akhond. Multicomponent acid-base titration by principal component-artificial neural network calibration [ J ]. Analytica Chimica Acta,2002,461 : 147 - 153.
  • 5George D Magoulas, Vassilis P Plagianakos, Michael N Vrahatis. Neural network-based colonoscopic diagnosis using on-line learning and differential evolution [ J ]. Applied Soft Computing, 2004 ( 4 ) : 369 - 379.
  • 6Deng j H, Lee C F. Displacement back analysis for a steep slope at the Three Gorges Project site[J]. International Journal of Rock Mechanics & Mining Sciences ,2001,38:259 - 268.
  • 7Cybenko G. Approximation by superpositions of a sigmoidal functions [ J ]. Mathematics of Control, Signals, and Systems, 1989 ( 2 ) :303 - 314.
  • 8Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators [ J ]. Neural Networks, 1989 ( 2 ) : 359 - 366.
  • 9刘雪峰,汪凌云.铝锂合金高温变形流变应力的人工神经网络模型[J].重庆大学学报(自然科学版),2001,24(2):68-71. 被引量:12

二级参考文献1

  • 1Chun M S,J Mater Process Technol,1999年,86卷,245页

共引文献11

同被引文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部