期刊文献+

E-Logistic混沌序列性能分析

The Performance Analysis of the Chaotic Sequence about E-Logistic
下载PDF
导出
摘要 对Logistic序列进行了扩展,使其混沌区域得到了扩大.通过分析该序列的遍历特性、相空间特性、倍周期分岔特性、Lyapunov指数、Feigenbaum第一常数等,表明它具有良好的混沌特性. With the research of the enlarged logistic sequence, the region of chaotic sequences enlarged. It is true that the sequences have good chaotic properties by researching the enlarged chaotic sequences of the ergodic characteristic, phase dimensional characteristic, the double-periods forks characteristic, Lyapunov exponent and Feigenbaum constant in the paper.
作者 孙娴 赵东风
出处 《伊犁师范学院学报(自然科学版)》 2009年第1期47-50,共4页 Journal of Yili Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(60362001 F0424104) 云南省自然科学基金资助项目(2003F0014M).
关键词 混沌序列 LYAPUNOV指数 Feigenbaum第一常数 Chaotic sequences Lyapunov exponents The 1 st Feigenbaum constants
  • 相关文献

参考文献6

二级参考文献35

  • 1年晓红.Lurie型控制系统的鲁棒决定稳定性[J].控制理论与应用,1995,12(5):641-645. 被引量:47
  • 2王亥,胡健栋.Logistic-MaP混沌扩频序列[J].电子学报,1997,25(1):19-23. 被引量:90
  • 3郝柏林.从抛物线谈起--混沌动力学引论[M].上海:上海科技教育出版社,1995..
  • 4王亥,胡健栋.改进型Logistic-Map混沌扩频序列[J].通信学报,1997,18(8):71-77. 被引量:78
  • 5Wu Yongxian, Zhao Suxia. Absolute stability of control systems with several nonlinear stationary elements in the case of an infinite sector [J].Avtomat. Telemekh, 1991, 52 (1): 34-42.
  • 6Grujic L J T, Petkovski D J. On robustness of Lurie systems with multiple non-linearities [J]. Automatica, 1987, 23(3): 327-334
  • 7Miyagi H, Yamashita K. Robust stability of Lur'e systems with multiple nonlinearities [J]. IEEE Trans.Automat. Contr.,1992, 37(6):883-886.
  • 8Konishi K, Kokame H. Robust stability of Lur'e systems with time-varying uncertainties: a linear matrix inequality approach [J]. Int. J. Sys,Sci., 1999, 30 (1): 3-9.
  • 9Boyd S, EL Ghaoui, et al. Linear matrix inequality in system and control theory [M]. In: SIAM Studies in Applied Mathematics. Philadelphia:1994.
  • 10尤肖虎,第四届全国青年通信学术会议论文集,1994年

共引文献153

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部