期刊文献+

EnKF在油藏描述及开发优化中的应用研究与进展 被引量:2

Review on Reservoir Description and Optimization Problemswith Ensemble Kalman Filter
下载PDF
导出
摘要 油藏精细描述模型和方法在油田开发调整方案设计计算中起主导作用,油藏精细描述成果是油藏开发设计中的基础。油田开发调整方案优化研究已有50多年历史,但截止本世纪初,优化方法都是基于控制理论的算法和基于敏感系数的算法,计算效率低,收敛性差,缺乏可操作性。最近几年来国际上许多学者将集合卡尔曼滤波(EnKF)方法引入到油藏工程领域,在油藏精细描述方面以及开发优化方面的取得了重要进展。本文对该理论的优势以及存在的问题做了评述。指出了在解决强非均质性、大规模油藏计算效率及多相流非线性等方面的突破,提供开发指标不确定性评价方法的可能性,该理论最终将形成与油藏数值模拟软件相结合的油藏开发优化算法,大大提高优化模型和方法的可靠性和实用性。论文指出了有待解决的问题及下一步研究方向。 In order to design modification program known properties of a reservoir. The research how to of field development, it is critical to characterize unoptimize reservoir adjustment plan has more than 50 years history. Efficient applications have, however, required either an adjoint or a gradient simulator method to compute the gradient of the objective function or a sensitivity coefficient matrix for the minimization. Both computations are expensive when the number of model parameters or the number of observation data is large. Recently, EnKF was introduced to petroleum engineering by many international scholars and has significant headway especially in reservoir characterization and Optimization Problems. the advantages and existing problem of ensemble Kalman Filter method is described briefly in this paper. This theory has been successfully applied to overcome strong heterogeneity, large number of variable and multiphase non--linearity in petroleum reservoir engineering and its applications look promising. The EnKF has been taken into use with simulation models for optimize method and provides optimize model with high efficiency and reliability. The possible developing direction in the near future and the problems implicit in EnKF are summarized as well.
出处 《内蒙古石油化工》 CAS 2009年第4期1-5,共5页 Inner Mongolia Petrochemical Industry
基金 国家863项目"特殊结构井开发油藏工程技术"(2006AA09Z338)资助
关键词 集合卡尔曼滤波 敏感系数 油藏模型 优化 油田开发 Ensemble Kalman Filter Sensitivity Coefficient Reservoir Model Optimization Oil--field Development
  • 相关文献

参考文献35

  • 1Evensen, G. , Sequential data addimilation with a nonlinear quasi-geostrophic model using monte carlo methods to forest error statistics , Journal of Geophysical Research, 1994, 99(C5),10,143-10,162.
  • 2Maybeck, P. S. , Stochastic Models, Estimation and Control. Academy Press,1982 ;423.
  • 3Lee, A. S. and Aronofsky, J. S. , "A Linear Programming Model for Scheduling Crude Oil Production", Accepted for publication in Journal of Petroleum Technology (July, 1958) vol. 10, No. 7, 51-54.
  • 4Wattenbarger R. A. " Maximizing Seasonal Withdrawals from Gas Storage Reservoirs", paper SPE presented at SPE 44 Annual Fall Meeting in Denver, Colorado, Sept. 28 - Oct 1,1969.
  • 5Liu,W. ,Ramirez,W. F. ,and Qi,Y. F. ,"Optimal Control of Steamflooding", SPE Advanced Technology Series, July 1993, vol. 1, no. 2, 73-82.
  • 6Baris, G. ,Horne, R. N. , Roger, L. , Rosenzweig, J. J. , "Optimization of well placement in a Gulf of Mexico Waterflooding Project", SPE Reservoir Evaluation and Engineering June 2002,Vol. 5,no. 3,pp. 229-236.
  • 7Badru, O. , and Kabir, C. S. , "Well Placement Optimization in Field Development", paper SPE 84191 prepared for presentation at the SPE Annual Technical Conference and Exhibition held in Denver, Colorado, 5 - 8 Oct, 2003.
  • 8Brouwer D. R. , J. D. ,Van Der Starre S. , Van Kruijsdijk, and BerentsenC. W. J. ,"Recovery Increase through Warterflooding with Smart Well Technology", paper SPE 68979 presented at the SPE European Formation Damage Confernce held in the Hague, The Netherlands, May 2001, 21-22.
  • 9Brouwer D. R. , Jansen J. D. , "Dynamic Optimization of Waterflooding With Smart Wells Using Optimal Control Theory", paper SPE 78278 presented at the 2002 SPE European Petroleum Conference, Aberdeen, U. K. , 29-31 October.
  • 10Kitanidis, P.K., Quasi-linear geostatistical theory for inversing, Water Resour. Res. , 1995,31(10), 2411-2419.

二级参考文献17

  • 1黄香杏,曾心,吴燊先,陆家德,赵慧.北部湾北部海面强风成因分析及其预报[J].广西气象,1993,14(3):39-43. 被引量:5
  • 2陆如华,何于班.卡尔曼滤波方法在天气预报中的应用[J].气象,1994,20(9):41-43. 被引量:52
  • 3孙纳正.地下水流的数值模型和数值方法[M].北京:地质出版社,1981..
  • 4余剑莉,统计气象预报,1994年,246页
  • 5徐萃薇,计算方法引论,1985年,136页
  • 6Reynolds A C,He Nanqun,Chu L,et al.Reparameterization techniques for generating reservoir description conditioned to varigrams and well-test pressure data[J].SPEJ,1996,34 (4):145-154.
  • 7Holden L E.Use of well test data in stochastic reservoir modeling[R],SPE 30591,1995:22-25.
  • 8Bonet-Cunha L,Oliver D S R,Redner A,et al.A hybrid markov chain monte-carlo method for generating permeability fields conditioned to multiwell pressure data and prior information[J].SPEJ,1998,36 (3):261-271.
  • 9He Nanque,Reynolds A C,Oliver D S,et al.Three-dimensional reservoir description from multiwell pressure data and prior information[J].SPEJ,1997,35(3):312-327.
  • 10Chen W H,Gavalas G R,Seinfeld J H,et al.A new algorithm for automatic history matching[J].SPEJ,1974,14(12):593-608.

共引文献48

同被引文献24

  • 1秦军,阎广建,刘绍民,梁顺林,张颢,王锦地,李小文.集合卡曼滤波在遥感反演地表参数中的应用——以核驱动模型反演BRDF为例[J].中国科学(D辑),2005,35(8):790-798. 被引量:10
  • 2Gao G H. Data integration and uncertainty evaluation for large scale automatic history matching. [Ph.D. thesis]. USA: Petroleum Engineering Department of Tulsa University, 2005.
  • 3Evensen G. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. C-eophys Res., 1994, 99(C5): 10143-10162.
  • 4Naevdal G, Johnsen L M, Aanonsen S I, et al. Reservoir monitoring and continuous model updating using ensemble Kalman filter. SPE Annual Technical Conference and Exhibition, Transactions, SPE Paper 84372, October 2003.
  • 5Haugen V, Natvik L J, Evensen G, et al. History matching using the ensemble Kalman filter on a North Sea field case. SPE Annual Technical Conference and Exhibition, Transactions, SPE Paper 102430, September 2006.
  • 6Evensen G, Hove J, Meisingset H C, et al. Using the EnKF for assisted history matching of a North Sea reservoir model. SPE Reservoir Simulation Symposium, SPE Paper 106184, February 2007.
  • 7Seiler A, Evensen G, Skjervheim J A, et al. Advanced reservoir management workflow using an EnKF based assisted history matching method. SPE Reservoir Simulation Symposium, SPE Paper 118906, February 2009.
  • 8Aanonsen S I, Navdal G, Oliver D S, et al. The ensemble Kalman filter in reservoir engineering-a review. SPE Journal, 2009, 14(3) :393-412.
  • 9Agbalaka C C, Oliver D S. Application of the EnKF and localization to automatic history matching of facies distribution and production data. Mathematical Geostatistics, 2008, 40 (4) : 353-374.
  • 10Zhao Y. Ensemble Kalman Filter Method for Gaussian and Non-Gaussian Priors [Ph. D. thesis]. USA: Petroleum Engineering Department of Tulsa University, 2008.

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部