期刊文献+

温州市年降水量的权马尔可夫链预测模型 被引量:7

An Annual precipitation Forecasting Based on Weighted Markov Chain in Wenzhou
下载PDF
导出
摘要 基于降水过程不确定性的特点,利用资料系列的均方差方法把降水序列分为不同的状态。在此基础上,采用统计方法,建立转移概率矩阵,以规范化的各阶自相关系数为权重,并用加权的马尔可夫模型和模糊集理论中的级别特征值预测降水状态和降水量。根据温州市区1955—2004年连续50 a的降水资料,用马尔可夫预测模型预测温州市2005—2007的降水状态及年降水量,预测误差分别为1.44%、0.3%、6.3%,满足预报精度,说明该模型应用于温州市区是成功的。 Based on the uncertainty characteristics, rainfall series could be divided into different states via mean square deviation method of data series. Transition probability matrix is obtained by using statistical method on that 'basis. Standardized autocorrelafion e^ffieients based on the special characteristics of correlation among the historical stochastic variables are regarded as weights. The weighted Markov chain model and file level characteristics value of fuzzy sets are used to predict the probability state and the precipitation. Furthermore, according to 50 - year continuous precipitation data from 1955 to 2004, the improved model is used to predict annual precipitation from 2005 to 2007. The forecasting errors are 1.44%, 0.3% and 6.3%, respectively, which meets the request of predication precision. It shows the model is successfully applied in Wenzhou.
出处 《浙江水利科技》 2009年第2期8-10,13,共4页 Zhejiang Hydrotechnics
关键词 马尔可夫链 模糊集理论 转移概率矩阵 自相关系数 年降水量预报 Markov chain fuzzy sets transition probability matrix self- correlative annual precipitation prediction
  • 相关文献

参考文献2

二级参考文献27

  • 1肖志云,文伟,彭思龙.小波域HMT模型参数的快速估计及其在图像降噪中的应用[J].计算机应用,2004,24(12):7-10. 被引量:4
  • 2王文科 廖健榕.模糊分析在水文地质学中的应用[M].西安:西安地图出版社,1997..
  • 3Sen Zekal. Critical drought analysis by second-order Markov-order[J]. Journal of Hydrology, 1990, 120(1--4) : 183--202.
  • 4Belge M., Kilmer M.E., Miller E.L. Wavelet domain image restoration with adaptive edge-preserving regularization. IEEE Transactions on Image Processing, 2000, 9(4): 597~608
  • 5Kalifa J.,Mallat S. Minimax restoration and deconvolution. In: Muller P., Vidakovic B. eds. Bayesian Inference in Wavelet Based Models. New York: Springer-Verlag, 1999
  • 6Banhan M., Katsaggelos A.K. Spatially adaptive wavelet-based multiscale image restoration. IEEE Transactions on Image Processing, 1996, 5(4): 619~634
  • 7Neelamani R., Choi H., Baraniuk R. ForWaRD: Fourier-wavelet regularized deconvolution for ill-conditioned systems. IEEE Transactions on Signal Processing, 2004, 52(2): 418~433
  • 8Rivaz P., Kingsbury N. Bayesian image deconvolution and denoising using complex wavelets. In: Proceedings of the IEEE International Conference on Image Processing--ICIP2001, Thessaloniki, Greece, 2001, 319~322
  • 9Robini M.C., Magnin I.E. Stochastic nonlinear image restoration using the wavelet transform. IEEE Transactions on Image Processing, 2003, 12(8): 890~905
  • 10Lagendijk R.L., Biemond J., Eboekee D. Identification and restoration of noise blurred images using the expectation-maximization algorithm. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1990, 38(7): 1180~1191

共引文献95

同被引文献82

引证文献7

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部