期刊文献+

分子动力学模拟单壁碳纳米管的轴向焊接(英文) 被引量:1

Molecular Dynamic Simulation of Welding Process Between Two Single-Walled Carbon Nanotubes in Axial Direction
下载PDF
导出
摘要 采用紧束缚分子动力学方法模拟了两个不同口径的单壁碳纳米管的轴向焊接过程。发现焊接过程会形成一些新的C-C键,但这些键的形成并不是瞬间、同时完成的,小口径的单壁碳纳米管会围绕一个最先形成的C-C键以与两管轴平行的一条直线为轴旋转;同时通过模拟还首次发现这些新形成的C-C键在焊接过程中会促使两个单壁碳管在径向上产生一个明显的约为0.317nm的位移。从最终结构可以看出两个单壁碳管的部分碳原子在管的一侧会形成一个良好线性关系。焊接过程中发生的这些现象可能影响最终结构的物理、电学性能。 The welding process between two single-walled carbon nanotubes (SWCNTs) with different radiuses in axial direction was investigated by using the tight-binding molecular dynamics (TBMD) method. It is found that the new C - C bond between two SWCNTs is not formed synchronously and instantaneously, and the smaller SWCNT is rolling around the first formed C- C bond in the whole welding process. Simultaneously, the formation of these new bonds will drag the smaller tube moving in radial direction, and causes a relative displacement about 0. 317 nm between two SWCNTs in radial direction which is found for first time in the welding process. In the ultimate structure, a good linear relationship can be found existing in some carbon atoms of the two tubes, and the line is parallel to the axis of the two SWCNTs. These phenomena should cause interest and attention for the potential influence on electronic properties of the ultimate structure.
出处 《微纳电子技术》 CAS 北大核心 2009年第3期148-153,共6页 Micronanoelectronic Technology
基金 support from the Education Committee of Jiangsu Province(06KJB510089) support from NTU(07Z040,07Z045)
关键词 单壁碳纳米管 紧束缚分子动力学 旋转 线性 连接 single-walled carbon nanotube (SWCNT) tight-binding molecular dynamics rolling liner junction
  • 相关文献

参考文献26

  • 1SLANINA Z, UHLK F, ADAMOWICZ L. Computations of model narrow nanotubes closed by fragments of smaller fullerenes and quasi-fullerenes[J]. Journal of Molecular Graphics and Modelling, 2003, 21 (6) : 517- 522.
  • 2DEKKER C. Carbon nanotubes as molecular quantum wires [J]. Physics Today, 1999, 52 (5): 22-28.
  • 3CIRACI S, BULDUM A, BATRA I P. Quantum effects in electrical and thermal transport through nanowires [J]. Journal of Physics: Condensed Matter, 2001, 13 (29) : R537 - R568.
  • 4CHICO L, CRESPI V H, BENEDICT L X, et al. Pure carbon nanoscale devices., nanotube heterojunctions [J]. Physical Review Letters, 1996, 76 (6): 971 - 974.
  • 5YAO Z, POSTMA H W C, BAI.ENTS L, et al. Carbon nanotube intramolecular junctions [J]. Nature, 1999, 402: 273 - 276.
  • 6OUYANG M, HUANG J L, CHEUNG C L, et al. Atomically resolved single-walled carbon nanotube intramoleeular junctions [J]. Science, 2001, 291 (5501): 97-100.
  • 7KIM H J, LEE J, KAHNGSJ, et al. Direct observation of localized defect states in semiconductor nanotube junctions [J]. Physical Review Letters, 2003, 90 (21): 216107-1 - 216107 - 4.
  • 8YOON Y G, MAZZONI M S, CHOI H J, et al. Structural deformation and intertube conductance of crossed carbon nanotube junctions [J]. Physical Review Letter, 2001, 86 (4): 688 - 691.
  • 9PONOMAREVA I, CHERNOZATONSKII I. A, ANDRIOTIS A N, et al. Formation pathways for single-wall carbon nanotube multiterminal junctions [J]. New Journal of Physics, 2003, 5: 119.1- 119.12.
  • 10LI J, PAPADOPOULOS C, XU J. Nanoelectronies growing Y-junction carbon nanotubes [J]. Nature, 1999, 402: 253-254.

同被引文献8

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部