期刊文献+

近邻边界Fisher判别分析 被引量:6

Neighborhood Margin Fisher Discriminant Analysis
下载PDF
导出
摘要 将数据集进行合理的维数约简对于一些机器学习算法效率的提高起着至关重要的影响。该文提出了一种利用数据点邻域信息的线性监督降维算法:近邻边界Fisher判别分析(Neighborhood Margin Fisher Discriminant Analysis,NMFDA)。NMFDA尝试将每一数据点邻域内最远的同类数据点和最近的异类数据点之间的边界在投影子空间内尽可能地扩大,从而提高基于距离的识别算法的准确率。同时为了解决非线性降维问题,提出了Kernel NMFDA,通过在几个标准人脸数据库上与其它降维算法的对比识别实验,验证了提出算法的有效性。 The curse of high dimensionality is usually a major cause of limitations of many machine learning algorithms. A novel algorithm called Neighborhood Margin Fisher Discriminant Analysis (NMFDA) is proposed for supervised linear dimensionality reduction. For every point, NMFDA tries to enlarge the margin of the farthest point with the same class label and the nearest point with the different class label. Also the Kernel NMFDA is proposed for nonlinear dimensionality reduction. The contrastive experiments on several benchmark face database show the effectiveness of proposed method.
出处 《电子与信息学报》 EI CSCD 北大核心 2009年第3期509-513,共5页 Journal of Electronics & Information Technology
关键词 维数约简 流形学习 主成份分析 FISHER判别分析 人脸识别 Dimensionality reduction Manifold learning Principal Component Analysis(PCA) Fisher discriminant analysis Face recognition
  • 相关文献

参考文献18

  • 1Jolliffe I T. Principal Component Analysis[M]. New York:Springer-Verlag, 1986, 10.
  • 2Fukunnaga K. Introduction to Statistical Pattern Recognition[M]. New York: Academic Press, 1991, 20.
  • 3Martinez A M and Kak A C. PCA versus LDA[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2001, 23(2): 228-233.
  • 4Seung H S and Lee D D. The manifold ways of perception[J]. Science, 2000, 290(5500): 2268-2269.
  • 5罗四维,赵连伟.基于谱图理论的流形学习算法[J].计算机研究与发展,2006,43(7):1173-1179. 被引量:76
  • 6Tenenbanm J B, De Silva V, and Langford J C. A global geometric framework for nonlinear dimensionality reduction[J]. Science, 2000, 290(5500): 2319-2323.
  • 7Roweis S T and Saul L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290(5500): 2323-2326.
  • 8Belkin M and Niyogi P. Laplacian eigenmaps and spectral techniques for embedding and clustering[C]. Advances in Neural Information Processing System, Vancouver, British Columbia, Canada, Dec. 3-8, 2001: 585-591.
  • 9He X, Yan S, Hu Y, Niyogi P, and Zhang H. Face recognition using laplacianfaces[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2005, 27(3): 328-340.
  • 10Chen H T, Chang H W, and Liu T L. Local discriminant embedding and its variants[C]. In Proceeding of International Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, June 20-25, 2005: 846-853.

二级参考文献43

  • 1张振跃,查宏远.线性低秩逼近与非线性降维[J].中国科学(A辑),2005,35(3):273-285. 被引量:8
  • 2杨剑,李伏欣,王珏.一种改进的局部切空间排列算法[J].软件学报,2005,16(9):1584-1590. 被引量:36
  • 3H. Sebastian Seung, Daniel D. Lee. The manifold ways of perception [J]. Science, 2000, 290(12): 2268-2269
  • 4Andrew Y. Ng, Michael I. Jordan, Yair Weiss. On spectral clustering: Analysis and an algorithm [G]. In: Advances in NIPS 14. Cambridge, MA: MIT Press, 2001. 849-856
  • 5J. Shawe-Taylor, N. Cristianini, J. Kandola. On the concentration of spectral properties [G]. In: Advances in NIPS 14. Cambridge, MA: MIT Press, 2001. 511-517
  • 6F. R. K. Chung. Spectral Graph Theory [M]. Fresno:American Mathematical Society. 1997
  • 7B. Scholkopf, A. Smola, K-R. Muller. Nonlinear component analysis as a kemel eigenvalue problem[J].Neural Computacation, 1998, 10(5): 1299-1319
  • 8T. Hastie, W. Stuetzle. Principal curves[J]. Journal of the American Statistical Association, 1989, 84(406) : 502-516
  • 9T. Cox, M. Cox. Multidimensional Scaling [M]. London:Chapman & Hall, 1994
  • 10J. B. Tenenbaum, V. de Silva, J. C. Langford. A global geometric framework for nonlinear dimensionality reduction [J].Science, 2000, 290(12): 2319-2323

共引文献75

同被引文献66

  • 1徐春明,张天平,王正群,郭亚琴.基于协同学的人脸分类集成[J].扬州大学学报(自然科学版),2006,9(2):48-52. 被引量:4
  • 2罗四维,赵连伟.基于谱图理论的流形学习算法[J].计算机研究与发展,2006,43(7):1173-1179. 被引量:76
  • 3于德介,陈淼峰,程军圣,杨宇.基于AR模型和支持向量机的转子系统故障诊断方法[J].系统工程理论与实践,2007,27(5):152-157. 被引量:11
  • 4刘爱伦,袁小艳,俞金寿.基于KPCA-SVC的复杂过程故障诊断[J].仪器仪表学报,2007,28(5):870-874. 被引量:16
  • 5TURK M,PENTLAND A.Eigenfaces for recognition[J].J Cognitive Neuroscience,1991,3(1):71-86.
  • 6BELHUMEUR P N,HEPANDA J P,KRIEGMAN D J.Eigenfaces vs Fisherfaces:recognition using class specific linear projection[J].IEEE Trans Pattern Anal Mach Intell,1997,19(7):711-720.
  • 7TENENBAUM J B,DE SILVA V,LANGFORD J C.A global geometric framework for nonlinear dimensionality reduction[J].Science,2000,290(5500):2319-2323.
  • 8ROWEIS S T,SAUL L K.Nonlinear dismensionality reduction by locally linear embedding[J].Science,2000,290(5500):2323-2326.
  • 9BELKIN M,NIYOGI P.Laplacian eigenmaps for dimensionality reduction and data representation[J].Neural Comput,2003,15(6):1373-1396.
  • 10HE Xiao-fei,YAN Shui-cheng,HU Yu-xiao,et al.Face recognition using laplacianfaces[J].IEEE Trans Pattern Anal Mach Intell,2005,27(3):328-340.

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部