期刊文献+

目标识别中SVM线性可分性研究 被引量:7

The Study on the Separability of SVM Used in Target Recognition
下载PDF
导出
摘要 该文主要研究了目标识别中SVM线性可分的充要条件以及线性不可分时软间隔分类的内涵。首先给出了SVM特征空间线性可分充要条件的简洁清晰、物理意义更明确的证明过程,然后证明了SVM特征空间线性不可分情况下,SVM软间隔分类超平面引入惩罚因子的实质,给出了惩罚因子的新解释。 This paper mainly studies the sufficient necessary condition of linear separability and the essential of soft margin in SVM, which is used in target recognition. In this paper, the sufficient necessary condition of linear separability is proved using a brief and clear method, and also proved and explained the new essential of penalty factor in SVM.
出处 《电子与信息学报》 EI CSCD 北大核心 2009年第3期570-573,共4页 Journal of Electronics & Information Technology
基金 国家自然科学基金(60572138) 973国家基础研究项目(51314)资助课题
关键词 目标识别 SVM 线性可分 非线性可分 惩罚因子 Target recognition Support Vector Machine(SVM) Linear separability Nonlinear separability Penalty factor
  • 相关文献

参考文献11

  • 1Vapnik V N. The Nature of Statistical Learning Theory [M]. New York: Springer, 2000: 123-167.
  • 2Elizondo D. The linear separability problem: Some testing methods [J]. IEEE Trans. on Neural networks, 2006, 17(2): 330-344.
  • 3Ben-Israel A and Levin Y. The geometry of linear separability in data sets [J]. Linear Algebra and Its Applications, 2006, 416(1): 75-87.
  • 4Pranckevicience E, Ho T K, and Somorjai R. Class separability in space reduced by feature selection [C]. The 18th International Conference on Pattern Recognition (ICPR'06), Hong Kong, 2006, Voh3: 254-257.
  • 5David M J Tax and Robert P W Duin. Support vector data description [J]. Machine Learning, 2004, 54(1): 45-66.
  • 6张铃.支持向量机理论与基于规划的神经网络学习算法[J].计算机学报,2001,24(2):113-118. 被引量:38
  • 7Cortes C and Vapnik V N. Support vector networks [J]. Machine Learning, 1995, 20(3): 273-297.
  • 8Shawe-Taylor J and Cristianini N. Kernel Methods for Pattern Analysis [M]. UK: Cambridge University Press, 2004, chapter 3.
  • 9刘向东,骆斌,陈兆乾.支持向量机最优模型选择的研究[J].计算机研究与发展,2005,42(4):576-581. 被引量:49
  • 10Patsch G. Benchmarks data sets. Available. http://ida.first. ffaunhofer.de/projects/bench/benchmarks.htm. 2003.7.

二级参考文献14

  • 1张铃,张钹,吴福朝.神经网络的规划学习算法[J].计算机学报,1994,17(9):669-675. 被引量:13
  • 2Drucker H,IEEE Trans Neural Networks,1999年,10卷,5期,1048页
  • 3Zhang Ling,IEEE Trans Neural Networks,1999年,10卷,4期,925页
  • 4Amari S,Neural Networks,1999年,12卷,783页
  • 5Zhang L,IEEE Trans Neural Networks,1995年,6期,3页
  • 6Pardalos P M,Linear Algebra Appl,1991年,152卷,1期,69页
  • 7V.N. Vapnik. The Nature of Statistical Learning Theory. New York: Springer-Verlag, 1995.
  • 8V. Cherkassky, F. Mulier. Learning from Data: Concept,Theory and Method. NY: John Viley & Sons, 1997.
  • 9O. Chapelle, V. M. Vapnik. Model selection for support vector machines. In: Proc. the 12th Conf. Neural Information Processing Systems. Cambridge, MA: MIT Press, 1999.
  • 10O. Chapelle, V. N. Vapnik, O. Bousquet, et al. Choosing multiple parameters for support vector machines. Machine Learning, 2002, 46(1): 131~159.

共引文献85

同被引文献53

引证文献7

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部