期刊文献+

降低高条件数信道下的球形译码算法复杂度的方法 被引量:2

A Method of Reducing the Complexity of Sphere Decoder in the High-Condition Number Channel
下载PDF
导出
摘要 MIMO系统中,球形译码可以在保证接近ML检测性能的前提下大大降低检测复杂度。但当信道矩阵条件数很高时,球形译码的复杂度仍然会很高。在分析了这一现象的原因后,本文提出了在高层对权值进行合并的一种球形译码算法,因为其减小了译码搜索过程中对树的高层节点的访问的概率,由此降低了搜索复杂度。仿真结果表明,这种算法在低信噪比、高条件数时可以节约20%的浮点运算操作次数。 For MIMO system, as an efficient algorithm to replace ML detection, Sphere Decoding (SD) can reduce the detection complexity greatly. Whereas the bad channel with large condition number still aggravates the computation complexity of SD. In this paper, the reason of this phenomenon is firstly analyzed. Secondly, an algorithm of combining weight at high layer is proposed for SD, aiming to reduce the probability of accessing into the high layer of the tree in the searching process of SD so as to decrease the complexity. The simulation results prove that the proposed algorithm can cut down the complexity distinctly, even to more than 20% at low SNR and high condition number.
出处 《电子与信息学报》 EI CSCD 北大核心 2009年第3期636-639,共4页 Journal of Electronics & Information Technology
基金 国家863计划项目(2006AA01Z257)资助课题
关键词 MIMO 球形译码 条件数 算法复杂度 MIMO Sphere Decoder(SD) Condition number Algorithm complexity
  • 相关文献

参考文献9

  • 1Chan A M and Lee Inkyu. A new reduced-complexity sphere decoder for multiple antenna systems. IEEE ICC, New York, 2002, 1: 460-464.
  • 2Pham D, Pattipati K R, and WiIlett P K, et al.. An improved complex sphere decoder for V-BLAST systems. IEEE Signal Processing Letters, 2004, 11(9): 748-751.
  • 3Fukatani T, Matsumoto R, and Uyematsu T. Two methods for decreasing the computational complexity of the MIMO ML decoder. IEICE Trans. on Fundamental, 2004, 87(10): 2571-2576.
  • 4Kawai H et al. Adaptive control of surviving symbol replica candidates in QRM-MLD for OFDM MIMO multiplexing. IEEE Journal on Selected Areas in Comunications, 2006, 24: 1130-1140.
  • 5Mobasher A and Taherzadeh M, et al A near-maximumlikelihood decoding algorithm for MIMO systems based on semi-definite programming. IEEE Trans. on Information Theory, 2007, 53(11): 3869-3886.
  • 6Pham D, Pattipati K R, Willett P K, and Luo J. A generalized probabilistic data association detector for multiple antenna systems. IEEE Communications Letters, 2004, 8(4): 205-207.
  • 7Behrouz F B, Zhu Haidong, and Shi Zhenning. Markov chain Monte Carlo algorithms for CDMA and MIMO communication systems. IEEE Trans. on Signal Processing, 2006, 54(5): 1896-1906.
  • 8Hassibi B and Vitro H. On the sphere-decoding algorithm I, Expected complexity. IEEE Trans. on Signal Processing, 2005, 53(8): 2806-2818.
  • 9Artes H, Seethaler D, and Hlawatsch F. Efficient detection algorithms for MIMO channels: A geometrical approach to approximate ML detection. IEEE Signal Processing Letters, 2003, 51(11): 2808-2820.

同被引文献15

  • 1Ma Xiaoli, Zhang W. Performance analysis for MIMO systems with lattice-reduction aided linear equalization [ J ]. IEEE Transactions on Communication, 2008, 56 : 309 -318.
  • 2Lenstra, Lenstra J H W, Lov'asz L. Factoring polynomi- alswith rational coefficients [ J ]. Math Ann, 1982, 261 : 515-534.
  • 3Gan Yinghung, Mow Waiho. Complex lattice reduction algorithms for low-complexity MIMO detection [ C ] // IEEE Globalcom. United States: [ s. n. 1, 2005: 2953 -2957.
  • 4Shang Yue, Xia Xianggen. Space-time codes achieving full diversity with linear receiver [ J]. IEEE Transactions on Information Theory, 2008, 54 (10) : 4528-4547.
  • 5Pautler J, Ahmed M, Rohani K. On application of multi- ple-input multiple-output antennas to CDMA cellular sys- tems [ C] // VTC. Atlantic City: [ s. n.], 2001: 1508-1512.
  • 6Gan Y H, Ling C, Mow W H. Complex Lattic Reduction Al- gorithm for Low-complexity Full Iversity MIMO Detection [ J ].IEEE Trans. Signal Process, 2009,57 (7) : 2701-2710.
  • 73GPP,TS 36.211 V 1.1.0. Physical Channels and Modula- tion[ S ].Sophia: 3GPP, 2008.
  • 8Yao H. Wornell GW (2002) Lattice Reduction Aided De- tectors for MIMO Communication Systems[J ].In: Proc IEEE Globecom, 2002:424-428.
  • 9Debbah M, Muquet B, Courville M, et al. MMSE Successive Interference Cancellation Scheme for New Spread OFDM Systems [ J ].IEEE ( VTC ) Springapan, 2000(5 ) : 745-749.
  • 10Kumar A, Chandrasekaran S, Chockalingam A, et al. Near- Optimal Large-MIMO Detection Using Randomized MCMC and Randomized Search Algorithms, in Proc [ C ]//IEEE In- ternational Conference on Communications (ICC),Kyoto, Japan, 2011 : 22-25.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部