期刊文献+

超声波降解有机物溶液的气泡动力学研究 被引量:5

Investigation of bubble dynamics in ultrasonic degrading organic liquor
下载PDF
导出
摘要 在超声波降解有机物溶液过程中,超声空化产生的高温高压以及空化泡振荡产生的激波在有机物溶液的降解中发挥重要作用.本文通过对超声波作用下气泡动力学的研究,讨论了超声波声压、频率、气泡初始半径等参量对有机物溶液降解效率的影响.研究发现,存在使降解效率极大的声压和频率。在空化稳定的情况下,存在一个使降解效率极大的气泡初始半径,降解效率随着黏滞系数的增大而减小。研究还发现,双频超声作用的空化效果比单频超声作用时强,与双频超声作用下有机物溶液降解率较大这一实验结果一致。 It has been found that high pressur, high temperature and shock wave during cavitaing bubble collapse induced by ultrasonic signal have evident effect at the process of ultrasonic degrading organic liquor. The investigation indicates that we can find out the best pressure and frequency for obtaining the maximal degrading efficiency in the range of steady cavitation. Cavitating bubble can keep on a steady vibration in a given original radius. The maximum of cavitation can be obtained at the best original radius. Degrading efficiency has an inverse ratio relationship with viscosity. The investigation also indicates that dual-frequency ultrasonic signal is much more efficient than single- frequency ultrasonic signal, the result is in agreement with the experiment basically.
出处 《声学学报》 EI CSCD 北大核心 2009年第2期180-186,共7页 Acta Acustica
基金 国家自然科学基金(10574071 10874088)资助项目
  • 相关文献

参考文献16

  • 1Suslick K S, Hammerton D A, Cline R E. The sonochemical hot spot. J. Am. Chem. Soc., 1986; 108(11): 5641.
  • 2Kazuhiko S, Keisuke Y, Kazuhiko S. Photocatalytic degradation of gaseous toluene in an ultrasonic mist containing TiO2 particles. Catal. Commun., 2008; 9:281--285.
  • 3Hilgenfeldt S, Grossmann S, Lohse D A. Simple explanation of light emission in sonoluminescence. Nature, 1999; 398(6726): 403-404.
  • 4Gaitan D F, Crum L A, Church C C, Roy R A. Sonoluminescence and bubble dynamics for a single, stable, cavi- tation bubble. J. Acoust. Soc. Am., 1992; 91(6): 3166-- 3183.
  • 5陈谦,邹欣晔,程建春.超声波声孔效应中气泡动力学的研究[J].物理学报,2006,55(12):6476-6481. 被引量:32
  • 6刘亚楠,陈伟中,黄威,高贤娴,姜李安,徐俊锋,朱逸斐.稳态声空化泡的高精度测量技术[J].科学通报,2005,50(22):2458-2462. 被引量:10
  • 7Sivasankar T, Paunikar A W, Moholkar V S. Mechanistic approach to enhancement of the yield of a sonochemical reaction. AIChE. J., 2007; 53(5): 1132--1143.
  • 8Lezzi A M, Prosperetti A. Rayleigh-Taylor instability for adiabatically stratified fluids. Phys. Fluids A., 1989; 1(11): 1784--1795.
  • 9Feng R, Zhao Y, Bao C. Sonochemistry in China. Ultrasonics Sonochemistry, 1997; 4(2): 183--187.
  • 10Zhang G M, Inez H. Ultrasonic degradation of trichloroacetonitrile, chloropicrin and bromobenzene: design factors and matrix effects. Adv. Environ. Res., 2000; 4: 211-218.

二级参考文献33

  • 1尚岩,尚琳,彭亚男,王宝贞.超声降解有机废水影响因素的探讨[J].哈尔滨商业大学学报(自然科学版),2003,19(3):277-281. 被引量:6
  • 2王文杰,陈伟中,姜李安,魏荣爵.自相似声压驱动下气泡的振动[J].声学学报,2005,30(1):31-36. 被引量:7
  • 3徐新华.[D].杭州:浙江大学,2001.
  • 4Gaitan D F, Crum L A, Church C C, et al. Sonoluminescence and bubble dynamics for a single, stable, cavitation bubble. J Acoust Soc Am, 1992, 91: 3166~3183.
  • 5Barber B P, Putterman S J. Light scattering measurements of the repetitive supersonic implosion of a sonoluminescing bubble. Phys Rev Lett, 1992, 69: 3839~3842.
  • 6Weninger K, Putterman S J, Barber B P. Angular correlations in sonoluminescence:Diagnostic for the sphericity of a collapsing bubble. Phys Rev E, 1996, 54: 2205~2208.
  • 7Tian Y R, Ketterling J A, Apfe R E. Direct observation of microbubble oscillations. J Acoust Soc Am, 1996, 100: 3976~3978.
  • 8Kozuka T, Hatanaka S, Yasui T, et al. Observation of a sonoluminescing bubble using a stroboscope. Jpn J Appl Phys, 2000, 39: 2967~2968.
  • 9Rayleigh L. On the pressure developed in a liquid during the collapse of a spherical cavity. Philos Mag, 1917, 34: 94~98.
  • 10Noltingk B E, Neppiras E A. Cavitation produced by ultrasonics. Proc Phys Soc, 1950, B63: 674~685.

共引文献78

同被引文献118

引证文献5

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部