期刊文献+

一种基于单纯形法的改进微粒群优化算法及其收敛性分析 被引量:32

A Simplex Method Based Improved Particle Swarm Optimization and Analysis on Its Global Convergence
下载PDF
导出
摘要 针对现有微粒群优化算法难以兼顾进化速度和求解质量这一难题,提出一种基于单纯形法的改进微粒群优化算法(Simplex method based improved particle swarm optimization,SM-IPSO).该算法采用多个优化种群,分别在奇数种群和偶数种群上并行运行微粒群算法和单纯形法,并通过周期性迁移相邻种群间的最优信息,达到微粒群算法和单纯形法的协同搜索:单纯形借助微粒群算法跳出局部收敛点,微粒群依靠单纯形提高局部开发能力.为强化两种算法所起作用,一种改进的微粒速度逃逸策略和Nelder-Mead单纯形法也被提出.最后,在Linux集群系统上运行所提算法,通过优化五个典型测试函数验证了算法的有效性. Considering that the existing particle swarm optimizations (PSO) do not give simultaneously attention to evolution speed and solution's quality, a simplex method based improved particle swarm optimization (SM-IPSO) is proposed in this paper. In SM-IPSO, the conception of multipopulations is adopted, where PSO and SM run on odd populations and even populations, respectively. And a periodical migrating operation between adjacent populations is also introduced in SM-IPSO in order to achieve cooperative search of both PSO and SM for solution space: SM can get away from local converged points by virtue of PSO, and PSO can improve its local exploiting capability under the help of SM. Furthermore, an improved escape method of particle velocities and improved Nelder-Mead SM are proposed in order to enhance the functions of PSO and SM in this paper. Finally, the proposed algorithm is implemented on a Linux cluster system, and experimental results on optimizing five benchmark functions demonstrate its usefulness.
出处 《自动化学报》 EI CSCD 北大核心 2009年第3期289-298,共10页 Acta Automatica Sinica
基金 国家自然科学基金(60775044) 江苏省自然科学基金(BK2008125) 江苏省普通高校研究生科研创新计划(CX07B-115Z)资助~~
关键词 并行 微粒群优化 单纯形法 多种群 速度逃逸 Parallel, particle swarm optimization (PSO), simplex method (SM), multi-population, velocity escape
  • 相关文献

参考文献26

  • 1Kennedy J, Eberhart R. Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks. Perth, Australia: IEEE, 1995. 1942-1948.
  • 2胡旺,李志蜀.一种更简化而高效的粒子群优化算法[J].软件学报,2007,18(4):861-868. 被引量:334
  • 3Belal M, EI-Ghazawi T. Parallel models for particle swarm optimizers. International Journal of Intelligent Computing and In[ormation Sciences, 2004, 4(1): 100-111.
  • 4张蕾,杨波.并行粒子群优化算法的设计与实现[J].通信学报,2005,26(B01):289-292. 被引量:9
  • 5Byung-II K, George A D, Haftka R T, Fregly B J. Parallel asynchronous particle swarm optimization. International Journal for Numerical Methods in Engineering, 2006, 67(4): 578-595.
  • 6郭彤城,慕春棣.并行遗传算法的新进展[J].系统工程理论与实践,2002,22(2):15-23. 被引量:51
  • 7Smith S. The simplex method and evolutionary algorithms. In: Proceedings of IEEE International Conference on Evolutionary Computation and IEEE World Congress on Computational Intelligence. Anchorage, USA: IEEE, 1998. 799-804.
  • 8Fan Shu-Kai S, Zahara E. A hybrid simplex search and particle swarm optimization for unconstrained optimization. European Journal of Operational Research, 2007, 181(2): 527-548.
  • 9Nelder J A, Mead R. A simplex method for function minimization. The Computer Journal, 1965, 7(4): 308-313.
  • 10Wang F, Qiu Y H, Feng N Q. Multi-model function optimization by a new hybrid nonlinear simplex search and particle swarm algorithm. In: Proceedings of the 1st International Conference on Advances in Natural Computation. Changsha, China: Springer, 2005. 562-565.

二级参考文献45

  • 1张丽平,俞欢军,陈德钊,胡上序.粒子群优化算法的分析与改进[J].信息与控制,2004,33(5):513-517. 被引量:85
  • 2李爱国.多粒子群协同优化算法[J].复旦学报(自然科学版),2004,43(5):923-925. 被引量:398
  • 3赫然,王永吉,王青,周津慧,胡陈勇.一种改进的自适应逃逸微粒群算法及实验分析[J].软件学报,2005,16(12):2036-2044. 被引量:134
  • 4邹燕明.小生境遗传算法的研究与应用[M].北京:北京理工大学,1999..
  • 5Mostaghim S,Teich J.Strategies for Finding Local Guides in Multi-objective Particle Swarm Optimization (MOPSO)[A].Proc of the IEEE Swarm Intelligence Symposium[C].Indianapolis,2003:26-33.
  • 6Shi Y,Eberhart R C.A modified Particle Swarm Optimizer[A].Proc of the IEEE Congress on Evolutionary Computation[C].Piscataway,1998:69-73.
  • 7Eberhart R C,Shi Y.Particle Swarm Optimization:Developments,Applications and Resources[A].Proc of the IEEE Congress on Evolutionary Computation[C].Seoul,2001:81-86.
  • 8Schutte J F,Reinbolt J A,Fregly B J,et al.Parallel Global Optimization with the Particle Swarm Algorithm[J].Int J Numerical Methods in Engineering,2004,61(13):2296-2315.
  • 9Peram T,Veeramachaneni K,Mohan C K.Fitness-distance-ratio Based Particle Swarm Optimization[A].Proc of the IEEE Swarm Intelligence Symposium[C].Indianapolis,2003:174-181
  • 10Brian Birge.PSOT-A Particle Swarm Optimization Toolbox for Use with Matlab[A].Proc of the IEEE Swarm Intelligence Symposium[C].Indianapolis,2003:182-186.

共引文献587

同被引文献365

引证文献32

二级引证文献331

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部